From Colon to Uterus: Potential of YOLOv۷ for Real-Time Polyp Detection in Hysteroscopy
- سال انتشار: 1404
- محل انتشار: InfoScience Trends، دوره: 2، شماره: 4
- کد COI اختصاصی: JR_ISJTREND-2-4_005
- زبان مقاله: انگلیسی
- تعداد مشاهده: 39
نویسندگان
Department of Urology, Mazandaran University of Medical Sciences, Sari, Iran.
Seyed Hossein Hosseini Berneti
Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
Student Research Committee, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
Student Research Committee, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
چکیده
Polyp detection is critical in both gastrointestinal and gynecological practice, with early identification significantly reducing cancer risk. While deep learning models like YOLOv۷ have demonstrated high ac-curacy in colonoscopic polyp detection, their application in hysteroscopy remains unexplored. This study systematically reviews YOLOv۷’s performance in colonoscopy and assesses its feasibility for hys-teroscopic polyp detection through a two-phase methodology: (۱) a literature review of YOLOv۷ applica-tions in polyp detection, and (۲) a comparative analysis of technical transferability to hysteroscopy. Find-ings reveal that YOLOv۷ achieves precision up to ۹۸.۸%, recall up to ۹۶.۳%, and real-time processing speeds (~۲۰ ms/frame) in colonoscopy, often enhanced by attention mechanisms and advanced loss functions. However, no studies directly evaluate YOLOv۷ for hysteroscopy, highlighting a critical re-search gap. Technical parallels between colonoscopic and hysteroscopic imaging—such as lesion mor-phology, illumination challenges, and real-time requirements—suggest plausible adaptability, but do-main-specific validation is lacking. Key limitations include the absence of hysteroscopic datasets and benchmarking. This study underscores the need for dedicated research to bridge this gap, proposing YOLOv۷ as a promising candidate for advancing real-time polyp detection in gynecological endoscopy.کلیدواژه ها
YOLOv۷, Polyp Detection, Hysteroscopy, Computer-aided diagnosis, Deep Learningاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.