MULTI OPTIMAL DESIGN OF GMDH TYPE-NN FOR MODELING AND PREDICTION OF GAS CONSUMPTION IN RASHT CITY
عنوان مقاله: MULTI OPTIMAL DESIGN OF GMDH TYPE-NN FOR MODELING AND PREDICTION OF GAS CONSUMPTION IN RASHT CITY
شناسه ملی مقاله: TCPCO01_260
منتشر شده در اولین همایش ملی تکنولوژی های نوین در شیمی و پتروشیمی در سال 1393
شناسه ملی مقاله: TCPCO01_260
منتشر شده در اولین همایش ملی تکنولوژی های نوین در شیمی و پتروشیمی در سال 1393
مشخصات نویسندگان مقاله:
N. Setayesh - M.Sc.student of Chemical Eng
a Daghbandan - Asist. Prof. of Chemical Eng. in Guilan University
خلاصه مقاله:
N. Setayesh - M.Sc.student of Chemical Eng
a Daghbandan - Asist. Prof. of Chemical Eng. in Guilan University
It is widely accepted that natural gas is a clean energy source that can be used to meet energy demand for heating and industrial purpose among the fossil fuels and its usage remarkably increases in order to maintain a clean environment in many countries in the world. Therefore, energy demand for various sectors should be estimated in the frame of short-term energy policy. In this paper, multi-objective evolutionary pareto optimal design of GMDH type-Neural Network has been used for modeling and predicting of gas consumption in Rasht, Guilan, Iran, using input-output data sets. In this way, multi-objective uniform-diversity genetic algorithms (MUGA) are then used for pareto optimization of GMDH networks. Input data set (mean temperature, moisture, rainfall and number of units) were obtained from the regional gas distribution company and the local meteorology office in last 7 years. The predicted values were compared with those of experimental values in order to estimate the performance of the GMDH network
کلمات کلیدی: GMDH, Natural gas consumption, Multi-objective uniform-diversity genetic algorithms (MUGA), Forecasting methodology, Neural Networks
صفحه اختصاصی مقاله و دریافت فایل کامل: https://civilica.com/doc/244482/