Designing and Optimizing Advanced Materials for Quantum Applications: A Multidisciplinary Approach Bridging Physics and Materials Engineering

سال انتشار: 1404
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 27

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

FMCBC09_082

تاریخ نمایه سازی: 2 آذر 1404

چکیده مقاله:

Quantum technologies, such as quantum computing and sensing, require materials with robust quantum properties under practical conditions. This study presents a comprehensive investigation into the design and optimization of two-dimensional (۲D) materials, specifically nitrogen-doped graphene and topological insulators, for quantum applications. By integrating quantum physics with advanced materials engineering, we employed molecular dynamics (MD) simulations, density functional theory (DFT), and experimental synthesis to enhance material performance. Our results show that nitrogen cluster doping in graphene reduces defect density by ۱۸% and enhances carrier mobility to ۱۴,۰۰۰ cm²/V's, while Bi۲Se۳ topological insulators achieve qubit coherence times of ۱۳۰ ns, a ۲۵% improvement over conventional systems. Scalable synthesis strategies, including oxygen-assisted chemical vapor deposition (CVD) and pulsed laser deposition (PLD), are proposed to address industrial challenges. These findings provide a roadmap for developing next-generation quantum materials with superior stability and performance.

نویسندگان

Sepehr Ghasemlou

Bachelor of Engineering and Materials Science, Urmia University