Comparative Evaluation of Machine Learning Algorithms for Evaporation Estimation in Shahrood Region

  • سال انتشار: 1404
  • محل انتشار: مجله مهندسی هیدرولیک و آب، دوره: 2، شماره: 2
  • کد COI اختصاصی: JR_JHWE-2-2_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 24
دانلود فایل این مقاله

نویسندگان

Ali Ebrahimi

Ph.D., Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Abbas Pourdeilami

Assistant Professor, School of Engineering, Damghan University, Damghan, Iran

Sina Khoshnevisan

MSc Student, Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Mohammadreza Asli Charandabi

Ph.D. Student, Civil Engineering, Shahrood University of Technology, Shahrood, Iran

چکیده

Accurate prediction of evaporation is critical for effective water resource management, particularly in arid and semi-arid regions. This research evaluates the performance of five machine learning algorithms Decision Tree, K-Nearest Neighbors, Support Vector Regression, Random Forest, and Artificial Neural Network in estimating monthly evaporation rates using meteorological data collected at Shahrood Synoptic Station from ۱۹۹۲ to April ۲۰۲۵. The dataset includes key climatic parameters such as average temperature, wind speed, precipitation, and relative humidity. Model performance was assessed through four metrics: Mean Absolute Error, Coefficient of Determination, Kling-Gupta Efficiency, and Average Absolute Relative Deviation. Results indicate that the Random Forest model outperformed all others, achieving the lowest MAE of ۱۹.۹۴ mm, highest KGE of ۰.۹۷۳, and lowest AARD of ۰.۵۲۱, reflecting superior accuracy and stability. The Artificial Neural Network model also demonstrated strong predictive capability, closely followed by Support Vector Regression, while simpler models like Decision Tree and K-Nearest Neighbors showed comparatively weaker performance due to their limited ability to capture complex evaporation dynamics. Temporal analysis revealed that all models effectively captured seasonal evaporation patterns, with Random Forest and Artificial Neural Network most accurately tracing peak and trough fluctuations. The results demonstrate that machine learning models possess strong predictive accuracy for evaporation estimation and offer a reliable approach for assessing evaporation and water loss.

کلیدواژه ها

Evaporation estimation, Machine learning algorithms, Artificial Neural Network, Shahrood, Meteorological Data

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.