Optimizing Organic Dye Degradation via Electro-Peroxone Process: An Experimental and Machine Learning Approach

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 38

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JHWE-2-2_012

تاریخ نمایه سازی: 28 آبان 1404

چکیده مقاله:

The electroperoxone (EPO) process, integrating ozonation and electrochemical hydrogen peroxide generation, has gained attention as an efficient advanced oxidation technology for treating recalcitrant pollutants. This study investigates the application of EPO for the removal of organic dye from synthetic wastewater using a two-stage analytical framework. In the first stage, a series of systematic batch experiments were conducted to explore the effects of key operational parameters, including initial pH, applied current, ozone dosage, and reaction time, on decolorization efficiency. In the second stage, predictive models were developed using machine learning algorithms—Support Vector Regression (SVR) and Random Forest (RF)—to capture the complex nonlinear behavior of the process. The Random Forest model outperformed others, achieving an R² value above ۰.۸۲۳ and demonstrating superior accuracy in predicting removal efficiency. Sensitivity analysis revealed ozone dosage and applied current as the most influential factors. These results highlight the potential of combining experimental optimization with robust data-driven modeling to enhance the design and scalability of advanced oxidation processes in wastewater treatment.

نویسندگان

Seyedeh Fatemeh Khakzad

Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Tahere Taghizade Firozjaee

Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Jafar Abdi

Department of Chemical Engineering, Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdi, J., Latifian, B., Firozjaee, T. T., & Hayati, B. ...
  • Bopape, D. A., Ntsendwana, B., & Mabasa, F. D. (۲۰۲۴). ...
  • Chaturvedi, A., Rai, B. N., Singh, R. S., & Jaiswal, ...
  • Chen, L., Wei, L., Ru, Y., Weng, M., Wang, L., ...
  • Deogaonkar-Baride, S., Koli, M., & Ghuge, S. P. (۲۰۲۵). Recycling ...
  • Fahimi Bandpey, A., Abdi, J., & Firozjaee, T. T. (۲۰۲۴). ...
  • Ghalebizade, M., & Ayati, B. (۲۰۱۶). Solar photoelectrocatalytic degradation of ...
  • Liu, C., Balasubramanian, P., Li, F., & Huang, H. (۲۰۲۴). ...
  • Moosavi, S., Manta, O., El-Badry, Y. A., Hussein, E. E., ...
  • Modeling of Electrical Energy in Industrial Wastewater Treatment Plant with Traditional and Artificial Neural Network Approaches [مقاله ژورنالی]
  • Shahamat, Y. D., Masihpour, M., Borghei, P., & Rahmati, S. ...
  • Shokri, A., & Sanavi Fard, M. (۲۰۲۲). Employing electro-peroxone process ...
  • Tamer, T. M., Abbas, R., Sadik, W. A., Omer, A. ...
  • Tingting, S., Jiang, C. C., Wang, C., Sun, J., Wang, ...
  • Wu, D., Lu, G., Zhang, R., Lin, Q., Yao, J., ...
  • نمایش کامل مراجع