Comprehensive Assessment of Supervised Machine Learning Models for Prediction of Oil Recovery Factor and NPV in Surfactant-Polymer Flooding: Bayesian Optimization and Stacking Ensembles

  • سال انتشار: 1403
  • محل انتشار: مجله علوم و فن آوری نفت، دوره: 14، شماره: 4
  • کد COI اختصاصی: JR_JPSTR-14-4_002
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 19
دانلود فایل این مقاله

نویسندگان

Kasra Ekhtiyaran Haghighi

Department of Petroleum and Geo-Energy Engineering, Amirkabir University of Technology (AUT), Tehran, Iran

Novin Nekuee

Department of Petroleum and Geo-Energy Engineering, Amirkabir University of Technology (AUT), Tehran, Iran

Maryam Ghorbani-Bavariani

Department of Petroleum and Geo-Energy Engineering, Amirkabir University of Technology (AUT), Tehran, Iran

Erfan Zarei

Department of Petroleum and Geo-Energy Engineering, Amirkabir University of Technology (AUT), Tehran, Iran

چکیده

Surfactant-polymer (SP) flooding is recognized as an effective chemical enhanced oil recovery (EOR) method, where accurate prediction of oil recovery factor (RF) and net present value (NPV) is vital for field development planning and economic analysis. This study systematically evaluates a range of supervised machine learning algorithms—including CatBoost, artificial neural networks (ANN), XGBoost, LightGBM, and gradient boosting regressor (GBR)—for forecasting RF and NPV based on experimental SP flooding data. Baseline model results were established using default hyperparameters, followed by comprehensive two-stage hyperparameter tuning using grid search and Bayesian optimization with Optuna, along with five-fold cross-validation to ensure robustness. CatBoost and ANN consistently achieved the highest predictive accuracy. In addition, ensemble stacking was then performed by combining top-performing models, further enhancing prediction reliability and generalization. Additional post-processing using quantile adjustment (linear residual correction) addressed residual bias and improved calibration between predicted and observed values. Furthermore, model performance was benchmarked using standard statistical metrics and comparative graphical analysis. Also, the results demonstrate that integrating well-established supervised learning methods with systematic optimization, stacking, and output calibration offers a robust and practical framework for accurate prediction of SP flooding outcomes. Moreover, this approach provides valuable support for data-driven decision-making in EOR project design and evaluation. Furthermore, the proposed framework achieved strong predictive accuracy in the all-stacking ensemble with cross-validation, yielding an R² of ۰.۹۷۸ and AAPRE of ۲.۷۱ for recovery factor, and an R² of ۰.۹۴۴ and AAPRE of ۶.۱۸ for net present value. Ultimately, then applying quantile adjustment to the all-stacking ensemble, the performance remained competitive, with an R² of ۰.۹۶۴ and AAPRE of ۳.۶۱ for recovery factor, and an R² of ۰.۹۲۴ and AAPRE of ۷.۹۴ for net present value, further demonstrating the robustness of the approach.

کلیدواژه ها

Surfactant-polymer flooding, oil recovery factor, Net Present Value, Supervised Machine Learning, Ensemble Stacking, Bayesian optimization, quantile adjustment

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.