Predicting the Mortality of Patients with Leukemia Using Artificial Intelligence

  • سال انتشار: 1400
  • محل انتشار: The Interdisciplinary Journal of Acute Care، دوره: 2، شماره: 1
  • کد COI اختصاصی: JR_IJA-2-1_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 7
دانلود فایل این مقاله

نویسندگان

Maryam Mahdavi

Student Research Committee, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Shiva Ariaiinezhad

Student Research Committee, School of Nursing and Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Parastou Kordestani

Critical care and Emergency Nursing, Faculty of Nursing & Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Khadijeh Heidarizadeh

Critical care and Emergency Nursing, Faculty of Nursing & Midwifery, Lorestan University of Medical Sciences, Khorramabad, Iran

Ahmad Eskandarzadeh

Stu.Res

Rasool Mohammadi

Nutritional Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran

چکیده

Several factors must be considered when predicting mortality in patients with hematological malignancies. These factors and characteristics complicate the ability of doctors’ and nurses to predict the prognosis of these diseases. This study aimed to develop a mortality prediction model for leukemia patients using artificial intelligence and a nearest-neighbor genetic algorithm. This retrospective study used the medical records of ۲۳۵ patients with leukemia at the Ahvaz Oncology Center from ۲۰۱۶ to ۲۰۱۹. To provide a mortality prediction model, a genetic algorithm and nearest neighbor were used. A genetic approach was employed to identify the determinants of mortality, and the nearest-neighbor technique was utilized to enhance model accuracy. Ultimately, the diagnostic power of the mortality prediction model was assessed using accuracy, sensitivity, and specificity criteria. The laboratory values and variables incorporated into the genetic algorithm revealed that mechanical ventilation, hemodialysis, neutropenia, and bone marrow transplantation significantly influenced the mortality rate of patients with leukemia. The diagnostic accuracy of the genetic algorithm introduced in this study was ۷۷.۴%, with a sensitivity of ۷۸.۲% and specificity of ۸۲%. The results showed the artificial intelligence algorithm in predicting mortality in leukemia patients.

کلیدواژه ها

Artificial intelligence, Leukemia, Genetic Algorithm, k-nearest neighbor algorithm, Oncology, Intensive Care Unit

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.