A Fuzzy Approach to Portfolio Optimization in the Light of Credibility Theory and Z-numbers: An Empirical Study of Tehran Stock Exchange

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 19

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIEPR-36-3_014

تاریخ نمایه سازی: 10 آبان 1404

چکیده مقاله:

Portfolio optimization has emerged as a cornerstone of modern financial theory, maintaining its position as one of the field’s most dynamic and extensively studied areas. While numerous optimization models have been developed and implemented, they fundamentally grapple with the persistent challenge of market uncertainty - an inherent and inescapable characteristic of financial markets. This uncertainty necessitates practical quantification methods to improve the reliability of financial projections, among which fuzzy theory has proven particularly valuable. However, despite its advantages over conventional approaches, traditional fuzzy theory contains a fundamental flaw in its underlying assumption: the presumed absolute reliability of fuzzy number estimations. This critical limitation undermines its effectiveness in real-world applications where information quality varies significantly. To address this gap, this paper proposes a novel portfolio optimization framework that integrates Z-number theory with credibilistic Conditional Value-at-Risk (CVaR) to address both the uncertainty and reliability of asset return estimates. Traditional fuzzy portfolio models often overlook the critical dimension of information quality, potentially leading to suboptimal allocations. Our approach overcomes this limitation by incorporating expert reliability assessments as an integral component of the optimization process through Z-numbers, where the first component represents fuzzy return estimates and the second quantifies their reliability. The model incorporates practical constraints, including cardinality limits and position sizing rules, to ensure real-world applicability. Using data from the Tehran Stock Exchange, we demonstrate that the Z-number-enhanced model produces more stable and economically rational portfolios compared to conventional fuzzy approaches. The results show that considering reliability leads to different asset allocations, with improved risk-adjusted performance. A key contribution is the demonstration that information quality measurably impacts portfolio outcomes, establishing reliability assessment as a necessary element in fuzzy portfolio optimization. This framework provides individual investors and portfolio managers with a more applicated tool for decision-making under uncertainty, especially valuable in markets with varying information quality across assets.

کلیدواژه ها:

نویسندگان

Hossein Ghanbari

PhD Candidate in Industrial Engineering, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Mostafa Shabani

MSc in Industrial Engineering, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Emran Mohammadi

Associate Professor, Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran ( Corresponding Author: E_mohammadi@iust.ac.ir - ۰۲۱۷۳۲۲۵۰۷۵)

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H. Markowitz, “PORTFOLIO SELECTION*,” J Finance, vol. ۷, no. ۱, ...
  • N. Liu, Y. Chen, and Y. Liu, “Optimizing portfolio selection ...
  • H. Ghanbari, M. Shabani, and E. Mohammadi, “Portfolio Optimization with ...
  • J. Longerstaey and M. Spencer, “Riskmetrics technical document,” Morgan Guaranty ...
  • R. T. Rockafellar and S. Uryasev, “Optimization of conditional value-at-risk,” ...
  • R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general ...
  • H. Ghanbari, M. Safari, R. Ghousi, E. Mohammadi, and N. ...
  • A. Eskorouchi, H. Ghanbari, and E. Mohammadi, “Exploring the Evolution ...
  • H. Ghanbari, H. Seiti, E. Mohammadi, and A. Elkamel, “Selecting ...
  • L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. ۸, ...
  • B. Liu, Uncertainty theory: an introduction to its axiomatic foundations, ...
  • B. Liu, Uncertainty theory: an introduction to its axiomatic foundations. ...
  • M. K. Mehlawat, “Credibilistic mean-entropy models for multi-period portfolio selection ...
  • E. Vercher and J. D. Bermúdez, “Portfolio optimization using a ...
  • F. Garcia, J. González-Bueno, F. Guijarro, J. Oliver, and R. ...
  • X. Huang, “A review of credibilistic portfolio selection,” Fuzzy Optimization ...
  • P. Gupta, M. K. Mehlawat, A. Kumar, S. Yadav, and ...
  • A. Ghahtarani, “A new portfolio selection problem in bubble condition ...
  • L. A. Zadeh, “A Note on Z-numbers,” Inf Sci (N ...
  • A. Jirofti and A. A. Najafi, “Portfolio Selection Using Z-Number ...
  • B. Kang, P. Zhang, Z. Gao, G. Chhipi-Shrestha, K. Hewage, ...
  • A. H. Mahmoodi, S. J. Sadjadi, S. Sadi-Nezhad, R. Soltani, ...
  • L. Hasanova, “Portfolio Selection Model Using Z-Numbers Theory,” Lecture Notes ...
  • B. Kang, D. Wei, Y. Li, and Y. Deng, “A ...
  • B. Kang, D. Wei, Y. Li, and Y. Deng, “Decision ...
  • R. A. Aliev and L. M. Zeinalova, “Decision making under ...
  • B. Liu and Y. K. Liu, “Expected value of fuzzy ...
  • R. Mansini, W. Ogryczak, and M. G. Speranza, “Conditional value ...
  • H. Ghanbari, E. Mohammadi, A. M. Larni Fooeik, R. Ravinesh ...
  • نمایش کامل مراجع