Numerical multiscale methods to determine the coefficient in diffusion problems
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 48
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CMDE-13-4_008
تاریخ نمایه سازی: 30 مهر 1404
چکیده مقاله:
Here we study the inverse problem of determining the highly oscillatory coefficient a^\varepsilon in some PDEs of the form u^\varepsilon_t - \nabla. (a^\varepsilon(x) \nabla u^\varepsilon)=۰, in a bounded domain \Omega \subset\mathbb{R}^d ; \varepsilon indicates the smallest characteristic wavelength in the problem (۰ < \varepsilon \ll ۱). Assume that g(t, x) is given input data for (t, x) \in (۰,T) \times\partial \Omega and the associated output is the thermal flux a^\varepsilon(x)\nabla u(T_۰,x)\cdot n(x) measured on the boundary at a given time T_۰. Due to the ill-posedness of the inverse problem, we reduce the dimension by seeking effective parameters. For the forward solver, we apply either analytic homogenization or some numerical multiscale methods such as the FE-HMM and LOD method.
کلیدواژه ها:
Heterogeneous multiscale method ، Homogenization ، Inverse problem ، Localized orthogonal decomposition method ، Parabolic partial differential equations
نویسندگان
Marzieh Tavakolian
Department of Applied Mathematics, Amirkabir University of Technology, No. ۳۵۰, Hafez Ave, Valiasr Square, Tehran, Iran ۱۵۹۱۶۳۴۳۱۱.
Ali Hatam
Department of Applied Mathematics, Amirkabir University of Technology, No. ۳۵۰, Hafez Ave, Valiasr Square, Tehran, Iran ۱۵۹۱۶۳۴۳۱۱.
Morteza Fotouhi
Department of Mathematical Sciences, Sharif University of Technology, Tehran ۱۱۳۶۵-۹۴۱۵, Iran.
Edmund Chadwick
School of Science, Engineering & Environment, University of Salford, Salford, M۵ ۴WT, UK.