Environmental impacts of pile driving-induced ground vibrations on human comfort and structural integrity

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 45

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GJESM-11-4_021

تاریخ نمایه سازی: 30 مهر 1404

چکیده مقاله:

BACKGROUND AND OBJECTIVES: Pile driving is widely used in infrastructure projects but it often generates strong ground vibrations that can spread into surrounding neighborhoods. These vibrations are more than just an engineering issue; they can be understood as a type of environmental pollution, similar to noise. Communities near construction sites frequently experience reduced comfort, annoyance, and even health concerns, while fragile houses and public facilities may be at risk of structural damage. In tropical alluvial soils, such as those found in Yogyakarta, Indonesia, low-frequency waves travel efficiently over long distances, which magnifies their environmental consequences. The main objectives of this study were to evaluate pile-driving vibrations as an environmental hazard, linking the technical results to wider concerns about human well-being and sustainable urban development.METHODS: Measurements were conducted during railway construction near Yogyakarta International Airport in Kulon Progo Regency. A triaxial geophone recorded vibrations at three distances: ۱۰, ۵۰, and ۷۰ meters. Parameters included peak particle velocity, ground displacement, and dominant frequency. A power-law regression was utilized to model the decrease of vibration energy with increasing distance. Results were assessed against Indonesian regulations and compared with international vibration standards commonly applied in environmental monitoring in Germany and the United Kingdom.FINDINGS:The analysis showed that low-frequency waves between ۵ and ۱۵ hertz were dominant. These intersected with the natural frequencies of nearby residential properties, which raised concerns regarding environmental impact and safety. At ۱۰ meters from the pile, peak particle velocity reached ۵.۶ millimeters per second, far above both the comfort limit of ۰.۳ millimeters per second and the damage threshold of ۲.۰ millimeters per second. At distances of ۵۰ meters and ۷۰ meters, the values of peak particle velocity dropped, but they still stayed above the comfort thresholds. A buffer of around ۶۰ meters was needed to avoid discomfort, while ۳۰ meters was necessary to prevent building damage.CONCLUSION:The results demonstrate that pile-driving vibrations should be managed as a form of environmental pollution. They diminish community stability, pose risks to vulnerable infrastructures, and complicate sustainable advancement in tropical locales. The findings advocate for the inclusion of vibration monitoring in evaluating environmental impacts, alongside the development of regulations and buffer zones to ensure the protection of residents and infrastructure.

نویسندگان

A. Margiantono

Department of Electrical Engineering, Faculty of Engineering, Semarang University, Indonesia

E. Setiawati

Department of Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Abdelsalam, M.; Seyedi, M., (۲۰۲۵). Numerical evaluation of pile-driving-induced vibrations ...
  • Abouelmaty, A.M.; Colaço, A.; Alves Costa, P.A., (۲۰۲۵). User-friendly tool ...
  • Andriyani, N.; Suprobo, P.; Adi, T.J.W.; Aspar, W.A.N.; Jatmiko, A.D.; ...
  • Asnawi, Y.; Simanjuntak, A.V.H.; Muksin, U.; Okubo, M.; Putri, S.I.; ...
  • Auersch, L.; Said, S., (۲۰۱۰). Attenuation of ground vibrations due ...
  • Avci, O.; Bhargava, A.; Nikitas, N.; Inman, D.J., (۲۰۲۰). Vibration ...
  • BS ۷۳۸۵-۲, (۱۹۹۳). Evaluation and measurement for vibration in buildings ...
  • Caro-González, A.L.; Niță, A.; Toro, J.; Zamorano, M., (۲۰۲۳). From ...
  • Chen, Q.; Liu, S.; Wang, Y.; Gao, Y.; Wen, B.; ...
  • Colaço, A.; Costa, P.A.; Parente, C.M.; Cardoso, A.S., (۲۰۲۱). Ground-borne ...
  • Colaço, A.; Ferreira, M.A.; Costa, P.A., (۲۰۲۲). Empirical, experimental and ...
  • Colaço, A.; Costa, P.A.; Ferreira, C.; Parente, C.; Fernandez-Ruiz, J., ...
  • Connolly, D.P.; Marecki, G.P.; Kouroussis, G.; Thalassinakis, I.; Woodward, P.K., ...
  • DIN ۴۱۵۰-۳, (۱۹۹۹). Structural vibration – Part ۳: Effects of ...
  • Dong, X.; Ye, Y.; Zhou, T.; Haase, D.; Lausch, A., ...
  • Ekman, L.; Lindholm, E.; Brogren, E.; Dahlin, L.B., (۲۰۲۱). Normative ...
  • Silva, E.; Lisboa, I.C.; Costa, N., (۲۰۲۴). How to determine ...
  • Gholami, H.; Ghorbanzadeh, O.; Blaschke, T., (۲۰۲۳). Modeling land susceptibility ...
  • Guo, F.; Jia, C.; Li, Z.; Wang, Y.; Huang, F.; ...
  • Hawrami, K.M.; Baset, A.K., (۲۰۲۴). Trace element concentrations, multivariate analysis ...
  • Herdiansyah, H., (۲۰۲۳). Smart city based on community empowerment, social ...
  • ISO, (۱۹۹۷). ISO ۲۶۳۱-۱: Mechanical vibration and shock — Evaluation ...
  • Jayawardana, P.; Achuhan, R.; De Silva, G.H.M.J.S.; Thambiratnam, D.P., (۲۰۱۸). ...
  • Kazemzadeh, F.; Khoshnevisan, B.; Moridi, A.; Shirmohammadi, R., (۲۰۲۳). Optimal ...
  • Kuo, C.T.; Yang, C.F.; Chang, C.M., (۲۰۲۰). Dynamic response of ...
  • Kuo, K.; Verbraken, H.; Degrande, G.; Lombaert, G., (۲۰۱۶). Hybrid ...
  • Kurniawan, A.R.; Murayama, T.; Nishikizawa, S., (۲۰۲۰). A qualitative content ...
  • Lin, J.; Zhang, N.; Zhang, Y., (۲۰۲۴). Study of the ...
  • Li, T.; Li, J.; Li, B.; Yu, G., (۲۰۲۵). Experimental ...
  • Litasari, U.C.N.; Widiatmaka; Munibah, K.; Machfud, (۲۰۲۲). Evaluation of carrying ...
  • Ma’hood, M.; Hamzehloo, H.; Doloei, G.J., (۲۰۰۹). Attenuation of high-frequency ...
  • Massarsch, K.R.; Fellenius, B.H., (۲۰۱۴). Ground vibrations from pile and ...
  • MERI, (۱۹۹۶). Decree of the State Minister of Environment No. ...
  • Ni, S.H.; Kuo, H.H.; Ju, S.H.; Guo, J.L., (۲۰۱۷). In-situ ...
  • Musir, A.A.; Abdul Ghani, A.N., (۲۰۱۴). A study of pile ...
  • Orozco-Herrera, J.E.; Turkel, B.; Arboleda-Monsalve, L.G.; Nam, B.H.; Jones, L., ...
  • Park, J.-Y.; Park, J.-H.; Choi, H.-J., (۲۰۲۵). Evaluating the effectiveness ...
  • Rezaei, M.; Ghalandarzadeh, A.; Ghazavi, M., (۲۰۱۶). Numerical analysis of ...
  • Romianingsih, N.P.W.; Utomo, S.W.; Hamzah, U.S., (۲۰۲۳). A comparative study ...
  • Shamimi Noori, H.; Shirinabadi, R.; Moosavi, E., (۲۰۲۱). Effect of ...
  • Shao, F.; Deng, Y.; Chen, S.; Zheng, R.; Zhang, R., ...
  • Sharma, M.; Ghosh, A.; Vinoth, B., (۲۰۲۵). Peak particle velocity ...
  • Sofiste, T.V.; Godinho, L.; Costa, P.A.; Soares, D.; Colaço, A., ...
  • Srivanit, M.; Pattanasri, S.; Phichetkunbodee, N.; Manokeaw, S.; Sitthikankun, S.; ...
  • Sun, Z.; Yu, H.; Li, C.; Liu, R.; Li, Q.; ...
  • Svinkin, V., (۲۰۱۳). Three groups of factors affecting the choice ...
  • Siskind, D.E.; Stagg, M.S.; Kopp, J.W.; Dowding, C.H., (۱۹۷۹). Structure ...
  • Tavasoli, O.; Ghazavi, M., (۲۰۱۶). Analysis of non-uniform cross section ...
  • Toygar, O.; Ulgen, D., (۲۰۲۱). A full-scale field study on ...
  • Utami, W.; Sugiyanto, C., (۲۰۲۵). Green infrastructure development challenges: The ...
  • Utepov, Y.; Mukhamejanova, A.; Nazarova, A.; Aniskin, A.; Kozhas, A.; ...
  • Wersäll, C.; Massarsch, K.R.; Spross, J., (۲۰۲۲). Heavy vibratory plate ...
  • Wei, J.; Wang, W.; Wu, J., (۲۰۲۲). Numerical investigation of ...
  • WHO, (۲۰۱۸). Environmental Noise Guidelines for the European Region. World ...
  • Yimsiri, S.; Ratananikom, W.; Asnachinda, P., (۲۰۲۵). Ground-borne vibration and ...
  • نمایش کامل مراجع