Challenges of Artificial Intelligence in Cancer Diagnosis: An Update on Future and Prospects
محل انتشار: مجله بین المللی پزشکی رضوی، دوره: 13، شماره: 4
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 42
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_RIJO-13-4_001
تاریخ نمایه سازی: 28 مهر 1404
چکیده مقاله:
Background: Artificial intelligence (AI) has become increasingly prominent in the medical field, particularly in the diagnosis of cancer. Objectives: This comprehensive review was conducted to review the challenges of AI in cancer diagnosis. Methods: This comprehensive review was conducted through a systematic search of major scientific databases, including PubMed, Scopus, Web of Science, and IEEE Xplore, utilizing a combination of keywords and Medical Subject Headings (MeSH) terms such as “artificial intelligence,” “machine learning,” “deep learning,” “neural networks,” “cancer diagnosis,” “oncological imaging,” “pathology,” “biomarkers,” and “precision oncology,” covering the period from January ۲۰۱۹ to December ۲۰۲۴ to capture the most relevant and impactful studies in this rapidly evolving field. The inclusion criteria were focused on peer-reviewed original research articles, significant review papers, and high-impact conference proceedings that demonstrated a direct application of AI algorithms in diagnostic procedures, while exclusion criteria encompassed non-English publications, studies with insufficient methodological detail, articles not focused on diagnostic applications, and editorials or opinion pieces without original data, ensuring a robust and evidence-based analysis of the current landscape. Results: The challenges in the widespread utilization of this technology in clinical settings are discussed. Deep learning algorithms, especially convolutional neural networks (CNN), can identify suspicious areas in mammograms, CT scans, and MRI images that doctors may easily overlook. These capabilities improve accuracy and reduce human errors in cancer diagnosis. In addition to image analysis, AI can also analyze patients' molecular and genetic data. Using genomic and proteomic data, this technology can identify gene mutations and specific biological markers of cancer. As a result, early diagnosis and selection of targeted patient treatments are carried out with greater accuracy. However, despite significant progress in this field, several challenges remain, including the accurate interpretation of data, the need for substantial training data, and the ability to generalize algorithms to diverse populations. Conclusion: In conclusion, AI is fundamentally augmenting the field of cancer diagnostics, moving from a theoretical promise to a powerful clinical tool. The evidence demonstrates that AI algorithms, particularly deep learning models, offer significant and measurable benefits.
کلیدواژه ها:
نویسندگان
Bahare Rashidi
Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
Kiarash Zohori
Pharmacy graduate, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Iran
Seyyedeh Samin Aminzadeh
Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
Seyedeh Fatemeh Abachi
School of Medicine, Novosibirsk State University
Farnaz Behzad
Electrical Department, Faculty of Engineering, Islamic Azad University-South Tehran Branch, Tehran, Iran
Alireza Omranzadeh
Medical Doctor, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :