How metaheuristic algorithms can help in feature selection for Alzheimer’s diagnosis

  • سال انتشار: 1402
  • محل انتشار: فصلنامه بین المللی تحقیقات در مهندسی صنایع، دوره: 12، شماره: 2
  • کد COI اختصاصی: JR_RIEJ-12-2_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 27
دانلود فایل این مقاله

نویسندگان

Farzaneh Salami

Department of Industrial Engineering, Alborz Campus, University of Tehran, Tehran, Iran.

Ali Bozorgi-Amiri

Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Reza Tavakkoli-Moghaddam

Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.

چکیده

Feature selection is the process of picking the most effective feature among a considerable number of features in the dataset. However, choosing the best subset that gives a higher performance in classification is challenging. This study constructed and validated multiple metaheuristic algorithms to optimize Machine Learning (ML) models in diagnosing Alzheimer’s. This study aims to classify Cognitively Normal (CN), Mild Cognitive Impairment (MCI), and Alzheimer’s by selecting the best features. The features include Freesurfer features extracted from Magnetic Resonance Imaging (MRI) images and clinical data. We have used well-known ML algorithms for classifying, and after that, we used multiple metaheuristic methods for feature selection and optimizing the objective function of the classification. We considered the objective function a macro-average F۱ score because of the imbalanced data. Our procedure not only reduces the irreverent features but also increases the classification performance. Results showed that metaheuristic algorithms could improve the performance of ML methods in diagnosing Alzheimer’s by ۲۰%. We found that classification performance can be significantly enhanced by using appropriate metaheuristic algorithms. Metaheuristic algorithms can help find the best features for medical classification problems, especially Alzheimer’s.

کلیدواژه ها

Metaheuristic Algorithm, Alzheimer’s disease, MRI, Machine Learning, Feature selection, Data mining

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.