Leveraging deep feature learning for handwriting biometric authentication

  • سال انتشار: 1403
  • محل انتشار: فصلنامه بین المللی تحقیقات در مهندسی صنایع، دوره: 13، شماره: 1
  • کد COI اختصاصی: JR_RIEJ-13-1_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 67
دانلود فایل این مقاله

نویسندگان

Parvaneh Afzali

Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran.

Abdoreza Rezapour

Department of Computer Engineering, Astaneh Ashrafieh Branch, Islamic Azad University, Astaneh Ashrafieh, Iran.

Ahmad Rezaee Jordehi

Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran.

چکیده

The authentication of writers through handwritten text stands as a biometric technique with considerable practical importance in the field of document forensics and literary history. The verification process involves a meticulous examination of the questioned handwriting in comparison to the genuine handwriting of a known writer, aiming to determine whether a shared authorship exists. In real-world scenarios, writer verification based on the handwritten text presents more challenges compared to signatures. Signatures typically consist of fixed designs chosen by signers, whereas textual content can vary and encompass a diverse set of letters, numbers, and punctuation marks. Moreover, verifying a writer based on limited handwritten texts, such as a single word, is recognized as one of authentication's open and challenging aspects. In this paper, we propose a Customized Siamese Convolutional Neural Network (CSCNN) for offline writer verification based on handwritten words. Additionally, a combined loss function is employed to achieve more accurate discrimination between the handwriting styles of different writers. The designed model is trained with pairs of images, each comprising one authentic and one questioned handwritten word. The effectiveness of the proposed model is substantiated through experimental results obtained from two well-known datasets in both English and Arabic, IAM and IFN/ENIT. These results underscore the efficiency and performance of our model across diverse linguistic contexts.

کلیدواژه ها

Writer Verification, Siamese Neural Network, Feature Learning, Combined Loss Function

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.