مقایسه رگرسیون چند متغیره و شبکه‌های عصبی در مدلسازی مکانی غلظت NOx در تهران

  • سال انتشار: 1392
  • محل انتشار: سومین کنفرانس برنامه ریزی و مدیریت محیط زیست
  • کد COI اختصاصی: ESPME03_297
  • زبان مقاله: فارسی
  • تعداد مشاهده: 831
دانلود فایل این مقاله

نویسندگان

مهرداد رفیع پور

دانشجوی کارشناسی ارشد سیستم اطلاعات مکانی،دانشگاه صنعتی خواجه نصیرالدین طوسی،

علی اصغر آل شیخ

دانشیار ، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی،

عباس علیمحمدی

دانشیار، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی،

ابوالقاسم صادقی نیارکی

استادیار، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی،

چکیده

آلودگی هوا یکی از مشکلات مهم شهر‌های بزرگ محسوب می‌شود. یکی از اهداف مسئولین شهری آگاه‌سازی شهروندان از میزان کیفیت هوا در مناطق مختلف شهر است. با توجه به اینکه NOx یکی از آلاینده‌های مهم هوا است و تاثیرات زیانباری بر سلامت انسان دارد، به همین دلیل در مقاله حاضر به مدلسازی مکانی غلظت آلاینده NOx با بهره‌گیری از رگرسیون چند متغیره و شبکه‌های عصبی پرداخته شده است. برای این مدلسازی از داده‌های غلظت آلاینده NOx اندازه‌گیری شده در ایستگاه‌های پایش کیفیت هوا شامل 41 ایستگاه ثابت در سال 1391 استفاده شده است. پارامترهای موقعیت، ارتفاع و هواشناسی شامل سرعت باد، جهت باد، دما و رطوبت نسبی به عنوان پارامترهای مکانی موثر در نظر گرفته شدند. رگرسیون چند متغیره و دو نوع شبکه عصبی مصنوعی شامل MLP و RBF مورد استفاده قرار گرفتند. میانگین مجذور کمترین مربعات خطا، برای هرکدام از روش‌ها محاسبه شد و نتایج نشان داد که شبکه عصبی MLP با خطای ppb 17 تا 43، کارایی بهتری نسبت به مدل‌های دیگر برای مدلسازی مکانی آلودگی هوا دارد. این در حالی است که رگرسیون چند متغیره با خطای ppb 56 تا 72 از کمترین دقت برخوردار است. خطای شبکه عصبی RBF برابر با ppb 18 تا 65 می‌باشد. در نهایت نقشه غلظت NOx در پاییز 1391 با استفاده از شبکه عصبی MLP تولید شد. در نقشه تولید شده بیشترین آلودگی در نواحی مرکزی و جنوبی شهر تهران است. اطلاعات تولید شده توسط این مدلسازی می‌تواند در آنالیز، برنامه‌ریزی و مدیریت کیفیت هوای شهر مورد استفاده قرار گیرد. نتایج این تحقیق نشان می‌دهد که شبکه عصبی MLP قابلیت مناسبی در مدلسازی غلظت NOx در تهران دارد.

کلیدواژه ها

آلودگی هوا، شبکه عصبی، مدلسازی مکانی، Nox

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.