Multi-Agent Reinforcement Learning for Human-Robot Collaboration
- سال انتشار: 1404
- محل انتشار: بیست و ششمین کنفرانس بین المللی فناوری اطلاعات، کامپیوتر و مخابرات
- کد COI اختصاصی: ITCT26_024
- زبان مقاله: انگلیسی
- تعداد مشاهده: 17
نویسندگان
Department of Information Technology & Computer Engineering
چکیده
Human-Robot Collaboration (HRC) has emerged as a critical area in intelligent systems, enabling robots and humans to work together seamlessly in complex environments. Recent advances in Reinforcement Learning (RL) have provided robust frameworks for adaptive decision-making, yet traditional single-agent RL often struggles to manage dynamic and uncertain multi-participant interactions. Multi-Agent Reinforcement Learning (MARL) addresses this limitation by allowing multiple agents—both human and robotic—to learn cooperative and competitive strategies simultaneously. This paper explores the integration of MARL in HRC, focusing on policy optimization, communication protocols, and shared reward mechanisms. The proposed framework leverages deep RL techniques to enhance adaptability, while considering factors such as safety, transparency, and scalability. Experimental simulations demonstrate that MARL can significantly improve task efficiency, coordination, and trust between humans and robots in collaborative settings. Furthermore, the study highlights the importance of explainable AI (XAI) in ensuring human operators can interpret agent decisions, fostering higher acceptance in real-world deployments. Overall, the findings suggest that MARL offers a promising direction for advancing HRC by bridging the gap between autonomous learning and human-centered collaboration.کلیدواژه ها
Multi-Agent Reinforcement Learning, Human-Robot Collaboration, Deep Reinforcement Learning, Cooperative Strategies, Policy Optimization, Explainable AIمقالات مرتبط جدید
- توسعه مدل های یادگیری چندعاملی برای هماهنگی خودمختار در سیستم های سایبری-فیزیکی با بهره گیری از تقویت یادگیری عمیق چندعاملی
- پیش بینی تطبیقی احساسات در گفتار چند زبانه با استفاده از مدل های ترنسفورمر چندوجهی و یادگیری انتقالی
- معماری های اصلی شبکه های عصبی عمیق و مقایسه آنها
- Beyond Counsel: The Role of Artificial Intelligence in Transforming Legal Practice and Justice Access
- معماری بهینه برای شبکه حسگر بیسیم با بیشترین کاهش انرژی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.