AI-Powered Predictive Modeling: Revolutionizing Construction Risk

  • سال انتشار: 1404
  • محل انتشار: اولین کنفرانس ملی پیشرفت شهرسازی، معماری و عمران
  • کد COI اختصاصی: CCUR01_084
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 8
دانلود فایل این مقاله

نویسندگان

Milad Torabi Anaraki

Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

چکیده

With the global construction market expected to expand substantially in the coming years and AI playing a crucial role in boosting productivity, this study aims to provide insights into the potential benefits of using AI for risk assessment in construction projects. Risk assessment is a critical and vital aspect of building project management. Effective risk identification, evaluation, and management are necessary to prevent time and cost overruns and to ensure project success. Existing risk assessment methods often fall short in understanding the complex and interdependent nature of risks in construction projects, especially under significant uncertainty. AI-based techniques provide innovative solutions by integrating various methods such as neural networks, genetic algorithms, fuzzy logic, and object-oriented approaches. These techniques often address risk interdependencies and significantly enhance the accuracy of risk assessments. In this article, we generate a synthetic dataset, train a Random Forest classifier to predict risks based on various project features, and evaluate the model's performance for accurate risk assessment in construction projects. The results demonstrate the effectiveness of employing AI, particularly Random Forest classifiers, for precise risk assessment in construction projects.

کلیدواژه ها

Artificial intelligence (AI), Construction Risk Management, Construction industry, Project schedules, Random Forest Classifier

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.