An Intelligent Framework for ECG-Based Cardiac Arrhythmia Classification Using Entropy-Guided Genetic Algorithm and Multi-Layer Perceptron Neural Network

  • سال انتشار: 1404
  • محل انتشار: نهمین کنفرانس بین المللی علوم، مهندسی، و نقش تکنولوژی در کسب و کارهای نوین
  • کد COI اختصاصی: SETIET09_019
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 110
دانلود فایل این مقاله

نویسندگان

Mohammadamir Razmi

Dept. of Aerospace Engineering, IAU-SRB, Tehran, Iran

Seyed Amirreza Navali Hosseini alavi

Dept. of Computer Engineering, IAU-Mashhad Branch, Mashhad, Iran

Pouya Faridfar

Dept. of Computer Engineering, IAU-Mashhad Branch, Mashhad, Iran

Arian Niazi

Dept. of Computer Engineering, IAU-Mashhad Branch, Mashhad, Iran

چکیده

Electrocardiogram (ECG) signal classification plays a vital role in the early detection and diagnosis of cardiac arrhythmias. In this study, we propose an efficient and lightweight classification pipeline that integrates wavelet-based preprocessing, entropy-guided feature selection using a Genetic Algorithm (GA), and a compact multilayer perceptron (MLP) for final classification. The ECG signals are first denoised using wavelet transform to remove baseline wander and high-frequency noise, after which R-peaks are detected and fixed-length segments are extracted around each peak. A total of ۲۸ handcrafted features-spanning time-domain, frequency-domain, wavelet, and higher-order statistical descriptors-are initially extracted from each heartbeat. The GA then selects an optimal subset of ۲۲ features to reduce dimensionality and enhance classification accuracy. The final MLP classifier is trained using these selected features to categorize heartbeats into five arrhythmia classes according to the AAMI EC۵۷ standard. The model was trained and evaluated on the MIT-BIH Arrhythmia Database using a patient-independent data split. Experimental results show that the proposed method achieves an average classification accuracy of ۹۹.۰۹%, with ۹۹.۱۲% sensitivity and ۹۹.۴۳% specificity across ۱۵ independent runs. The results demonstrate the model's robustness, computational efficiency, and suitability for real-time cardiac monitoring systems and wearable devices.

کلیدواژه ها

ECG, cardiac arrhythmia, feature selection, genetic algorithm, multilayer perceptron

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.