Intelligent traffic signal scheduling using artificial intelligence algorithms based on real-time traffic flows

  • سال انتشار: 1404
  • محل انتشار: مجله الگوریتم های محاسباتی و ابعاد عددی، دوره: 4، شماره: 3
  • کد COI اختصاصی: JR_CAND-4-3_003
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 10
دانلود فایل این مقاله

نویسندگان

Mansoureh Naderipour

Department of Industrial Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

Amir Hossein Amiri

Department of Industrial Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

چکیده

Intelligent traffic management has become a critical research focus due to the rapid increase in urban populations and vehicle ownership, which has led to severe congestion and safety concerns worldwide. Traditional fixed-time traffic signal systems fail to adapt to dynamic traffic flows, while actuated-time methods, although more responsive, are still limited in handling real-time complexity. Recent advances in Artificial Intelligence (AI) and deep learning, particularly object detection algorithms such as YOLOv۸, provide new opportunities to enhance traffic signal scheduling through real-time vehicle recognition and flow estimation. In this paper, we propose an intelligent traffic signal scheduling model based on YOLOv۸ for vehicle detection, combined with a Multi-Layer Perceptron (MLP) neural network for computing optimal green-phase durations. The system accounts for real-time vehicle counts, lane occupancy ratios, and signal history, while embedding safety and operational constraints such as minimum/maximum green times, fixed yellow phases, and red-time derivation. Moreover, emergency vehicles are given higher priority weights to minimize their clearance time. Simulation results demonstrate that the proposed approach achieves higher detection accuracy (mAP@۰.۵ of ۵۰.۲%) compared to Faster R-CNN and YOLOv۷ baselines, and reduces average vehicle delay by up to ۲۳% compared to fixed-time control. Emergency vehicle clearance times are also reduced by approximately ۳۵%, confirming the robustness and applicability of the method under varying traffic volumes and environmental conditions.

کلیدواژه ها

intelligent traffic control, YOLOv۸ Detection, Neural Network Scheduling, Artificial intelligence, Real-Time Traffic Flows, Emergency Vehicle Priority, Adaptive Signal Timing

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.