Quantification of sEMG Signals for Automated Muscle Fatigue Detection Using Nonlinear SVM

  • سال انتشار: 1391
  • محل انتشار: اولین کنفرانس ملی مهندسی برق اصفهان
  • کد COI اختصاصی: ISFAHANELEC01_135
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 889
دانلود فایل این مقاله

نویسندگان

F. Biyouki

Dept. of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

S. Rahati

Dept. of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

K. Laimi

Dept. of Physical Medicine and Rehabilitation, Turku University Hospital, Turku, Finland.

A. Shoeibi

Assistant Professor of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran

چکیده

Fatigue is a multidimensional and subjective concept and is a complex phenomenon including various causes,mechanisms and forms of manifestation. Thus, it is crucial to delineate the different levels and to quantify selfperceivedfatigue. The aim of this study was to introduce a method for automatic quantification and detection ofmuscle fatigue using surface EMG signals. Thus, sEMG signals from right sternocleidomastoid muscle of 9 healthyfemale subjects were recorded during neck flexion endurance test in Quaem hospital. Then six features in time,frequency and time- scale domains were extracted from signals. After dimensionality estimation and reduction, theSVM classifier was applied to the resulted feature vector. Then, the performance of linear SVM and nonlinear SVMwith RBF kernel and the effect of value in RBF kernel, on the accuracy of classification were evaluated. The resultsshow that the best accuracy is achieved using RBF kernel SVM with equal to 0.5 (91.16%) and also the selectedfeatures using LLE criterion, were RMS, ZC and AIF. These results suggest that the selected features contained someinformation that could be used by nonlinear SVM with RBF kernel to best discriminate between fatigue andnonfatigue stages.

کلیدواژه ها

Surface Electromyography (sEMG), SternoCleidoMastoid muscle (SCM), muscle fatigue, classification, Radial Basis Function (RBF) kernel, Support Vector Machines (SVM)

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.