Machine learning-based simulation of borehole grade identical twins from geophysical attributes: Comparative study of LR, GB, RF, and SVM in Kahang, Iran
- سال انتشار: 1404
- محل انتشار: مجله معدن و محیط زیست، دوره: 16، شماره: 5
- کد COI اختصاصی: JR_JMAE-16-5_008
- زبان مقاله: انگلیسی
- تعداد مشاهده: 48
نویسندگان
Department of Mining, Petroleum and Geophysics, Shahrood University of Technology,Shahrood, Iran
Faculty Member, Department of Mining and Petroleum Engineering, Imam Khomeini International University, Qazvin, Iran
Faculty Member, Department of Mining and Petroleum Engineering, Imam Khomeini International University, Qazvin, Iran
Senior Exploration Engineer, Kavoshgaran Consulting Engineers, Tehran, Iran
Senior Mining Engineer, SRK Consulting, Vancouver, Canada
چکیده
Estimating ore grades during the exploration phase is often time-consuming and costly due to the need for extensive drilling. Geophysical surveys, as the last indirect exploration method before drilling, offer valuable insights into subsurface mineralization. This study introduces a novel approach for simulating “identical twins” of borehole copper grade values using geophysical attributes derived from the geoelectrical method in the Kahang porphyry copper deposit, central Iran. By treating the simulated values as digital twins of actual borehole grades, we employed four machine learning algorithms—Linear Regression (LR), Gradient Boosting (GB), Random Forest (RF), and Support Vector Machine (SVM)—to model the complex relationships between geophysical inputs and copper grades. After data preprocessing with Principal Component Analysis (PCA), a refined dataset was used to train, test, and validate each model. The results demonstrate that GB yielded the highest predictive accuracy, generating grade estimates closely aligned with actual values. This identical twin modeling approach highlights the potential of machine learning to enhance early-stage mineral exploration by reducing dependence on costly drilling.کلیدواژه ها
Linear Regression, Gradient Boosting, Random Forest, Support Vector Machine, Identical Twinاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.