Predictive Analysis and Data-Driven Approaches for Developing Sustainable Municipal Solid Waste Management Strategies in Smart Cities: An Urban Analysis of Madurai

  • سال انتشار: 1404
  • محل انتشار: Iranian Journal of Chemistry and Chemical Engineering، دوره: 44، شماره: 7
  • کد COI اختصاصی: JR_IJCCE-44-7_015
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 10
دانلود فایل این مقاله

نویسندگان

Valai Ganesh S.

Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, Tamil Nadu, INDIA

Suresh V.

Department of Electronics and Communication Engineering, National Engineering College, Kovilpatti, Tamil Nadu, INDIA

Godwin Barnabas S.

Department of Mechanical Engineering, Tamilnadu College of Engineering, Coimbatore, Tamil Nadu, INDIA

چکیده

The development of predictive models for waste handling remains the primary barrier to sustainable waste management in Madurai Smart City for accurate policy formulation. The research brought together quantitative data collected through stakeholder interviews of waste policies and quantitative methods measuring waste collection rates using population projections and machine learning algorithms. XG Gradient Boosting (a machine learning technology) generated the most precise outcomes when we evaluated our models because it forecasted organic waste with a coefficient of determination (R²) of ۰.۹۱ and inorganic waste with R² = ۰.۹۱, surpassing traditional Linear Regression models that reported organic waste prediction accuracy at R² = ۰.۸۶۷ and inorganic waste prediction at R² = ۰.۵۷۷. The temporal evaluation revealed seasonal patterns. Cultural events generated waste volumes that were ۳۰% higher than normal yearly rates. The spatial assessment results show that Zones ۱ and ۴ are waste generation priority areas requiring a ۷۵% capacity expansion during the next decade. Waste production in Madurai is projected to reach ۱,۰۰۰ metric tons each day by ۲۰۳۰, representing an increase of ۵۴% from the present levels. An assessment of the findings indicates that the processing capacity should be expanded to ۳۵۰ Tons Per Day (TPD), and waste segregation policies must implement zone-based rules while optimizing delivery routes to decrease vehicle fuel usage by ۱۵-۲۰%. The data-based structure provides the groundwork for constructing enduring waste management facilities throughout Madurai and similar fast-developing urban territories.

کلیدواژه ها

Machine Learning, Municipal solid waste, Predictive Modelling, Smart cities, Urban Sustainability, Waste Forecasting, Waste management

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.