Backpropagation Neural Network Implementation in Volumetric Modulated Arch Therapy of Brain Cancer Dose Prediction
- سال انتشار: 1404
- محل انتشار: مجله فیزیک پزشکی ایران، دوره: 22، شماره: 2
- کد COI اختصاصی: JR_IJMP-22-2_004
- زبان مقاله: انگلیسی
- تعداد مشاهده: 48
نویسندگان
Nafisa Imtiyaziffati Rasoma Muliarso
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, ۱۶۴۲۴, Indonesia
Department of Radiation Oncology, MRCCC Siloam Hospital Semanggi, Jakarta, ۱۲۹۳۰, Indonesia
Department of Radiation Oncology, MRCCC Siloam Hospital Semanggi, Jakarta, ۱۲۹۳۰, Indonesia
Department of Radiation Oncology, MRCCC Siloam Hospital Semanggi, Jakarta, ۱۲۹۳۰, Indonesia
Department of Radiation Oncology, MRCCC Siloam Hospital Semanggi, Jakarta, ۱۲۹۳۰, Indonesia
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, West Java, ۱۶۴۲۴, Indonesia
چکیده
Introduction: The quality of volumetric modulated arc therapy (VMAT) planning is highly subjective and varies due to differences in planner’s experience. This process is time-consuming and involves multiple iterations to achieve clinical goals. Recent advancements in artificial intelligence (AI) offers an objective approach to improve the efficiency of VMAT planning.Material and Methods: In this study, the backpropagation neural network with ۵-fold cross-validation model was employed to train the extracted Radiomics and dosiomics features from organ contours DICOM RT structure and dose distribution DICOM RT dose using ۱۷۸ VMAT technique brain cancer patients. The Radiomics and dosiomics features represent the organ shapes and dose distribution quantitatively to increase the prediction accuracy. The Mean Squared Error and paired t-test was used in model evaluation. The treatment planning quality parameters, homogeneity index (HI) and conformity index (CI), was evaluated from both predicted and clinical dose.Results: The paired t-test indicated no significant differences (p-value > ۰.۰۵) in organs at risk (OAR) and planning target volume (PTV). The p-value for the left optic nerve is the lowest among average dose (Dmean) and maximum dose (Dmax), respectively ۰.۱۴۵۶ and ۰.۰۶۶۲. The average HI was ۰.۰۸۴±۰.۰۳۶ (predicted) and ۰.۰۸۹±۰.۰۷۳ (clinical), and CI was ۰.۹۳۸±۰.۱۰۷ (predicted) and ۰.۹۵۷±۰.۱۳۶ (clinical).Conclusion: The p-value for predicted parameters suggest that neural network-based dose prediction using Radiomics and dosiomics features produces results comparable to the manual treatment planning by medical physicists (overall testing dataset MSE = ۰.۰۳۵۵).کلیدواژه ها
Artificial intelligence, volumetric modulated arc therapy, Neural Network, Radiomicsاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.