Chest CT in Pulmonary Fibrosis: A Narrative Review of Imaging Patterns and Their Prognostic Significance
- سال انتشار: 1404
- محل انتشار: مجله پزشکی قلب و قفسه سینه، دوره: 13، شماره: 2
- کد COI اختصاصی: JR_JCTM-13-2_006
- زبان مقاله: انگلیسی
- تعداد مشاهده: 55
نویسندگان
Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Mohammad Amin Shajareh Pour Salavati
Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
چکیده
Pulmonary fibrosis represents a heterogeneous group of interstitial lung diseases (ILDs) marked by progressive scarring of the lung parenchyma and declining respiratory function. High-resolution computed tomography (HRCT) plays a pivotal role in diagnosing and managing fibrotic ILDs, particularly idiopathic pulmonary fibrosis (IPF), connective tissue disease-associated ILD (CTD-ILD), and chronic hypersensitivity pneumonitis (CHP). This narrative review explores key imaging patterns observable on chest CT and their prognostic implications across these major subtypes. We conducted a literature review of studies published between ۲۰۱۰ and ۲۰۲۵ using PubMed, Scopus, and Web of Science, focusing on CT features, subtype differentiation, prognostic imaging biomarkers, and recent innovations in radiomics and artificial intelligence (AI). Characteristic HRCT findings, such as honeycombing, reticulation, ground-glass opacities, and traction bronchiectasis, were analyzed in the context of usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP) patterns. UIP pattern on HRCT is strongly associated with IPF and confers a worse prognosis compared to NSIP or other non-UIP patterns. Quantitative imaging methods and automated CT analytics offer objective measurements of fibrosis extent and have demonstrated promising correlations with physiologic parameters such as forced vital capacity (FVC) and diffusing capacity for carbon monoxide (DLCO). Emerging AI tools enhance disease classification, monitor progression, and support clinical decision-making. Despite substantial advances, challenges such as inter-reader variability, limited access to quantitative software, and unstandardized CT protocols persist. Furthermore, AI applications require broader validation in multicenter cohorts before routine implementation. This review highlights the central role of HRCT in the multidisciplinary evaluation of pulmonary fibrosis. It underscores the prognostic significance of specific imaging features and advocates for standardized imaging interpretation and the integration of AI to refine diagnostic accuracy and therapeutic planning.کلیدواژه ها
CT Scan, ILD, AI, IPF, NSIPاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.