Solving the optimizing parameters problem for non-linear datasets using the high-order general least deviations method (GLDM) algorithm
- سال انتشار: 1404
- محل انتشار: مجله روشهای محاسباتی برای معادلات دیفرانسیل، دوره: 13، شماره: 3
- کد COI اختصاصی: JR_CMDE-13-3_016
- زبان مقاله: انگلیسی
- تعداد مشاهده: 51
نویسندگان
School of Electronic Engineering and Computer Science, Department of System Programming, South Ural State University, ۴۵۴۰۸۰ Chelyabinsk, Russia.
چکیده
This study presents an innovative approach to determining the coefficients of a high-order quasilinear autoregressive model using the Generalized Least Deviations Method (GLDM). The model aims to capture the dynamics of observed state variables over time, employing a set of given functions to relate past observations to current values. The errors in the observations are considered unknown. The core innovation lies in addressing the Cauchy problem within the GLDM framework, which enhances the robustness and precision of parameter estimation for non-linear datasets. GLDM is achieved by incorporating a loss function based on the arctangent function, improving resilience against outliers and non-standard error distributions. Comprehensive computational experiments and statistical validation determine optimal model orders for various datasets, including small NDVI (Normalized Difference Vegetation Index) time series, extensive temperature time series, and large wind speed datasets. The second-order model is most effective for small NDVI datasets, while the fifth-order model excels for large temperature datasets. For wind speed data, despite its large size, the second-order GLDM model demonstrates superior performance due to its ability to balance model complexity with the need for capturing essential dynamics without overfitting. Furthermore, a comparative analysis of GLDM-based models with classical forecasting models demonstrates the superior adaptability and accuracy of GLDM models across different dataset characteristics. This highlights their robustness against outliers and data anomalies. The study underscores the versatility and efficacy of high-order GLDM models as powerful tools in predictive modeling, offering significant improvements over traditional methods.کلیدواژه ها
Mathematical model, Least Deviations, Residuals, Forecasting, Time Series, Quasilinear Recurrence Equations, optimizationاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.