On the stability analysis and the solitonic wave structures for the Fordy-Gibbons-Jimbo-Miwa equation

  • سال انتشار: 1404
  • محل انتشار: مجله روشهای محاسباتی برای معادلات دیفرانسیل، دوره: 13، شماره: 3
  • کد COI اختصاصی: JR_CMDE-13-3_021
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 72
دانلود فایل این مقاله

نویسندگان

Fazal Badshah

School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan ۴۴۲۰۰۲, People's Republic of China.

Kalim U. Tariq

Department of Mathematics, Mirpur University of Science and Technology, Mirpur-۱۰۲۵۰ (AJK), Pakistan.

Hadi Rezazadeh

Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran.

Medhat Ilyas

Department of Mathematics, Mirpur University of Science and Technology, Mirpur-۱۰۲۵۰ (AJK), Pakistan.

Mir Sajjad Hashemi

Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran.

Mohammad Ali Hosseinzadeh

Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies, Amol, Iran.

چکیده

In this article, the Fordy-Gibbons-Jimbo-Miwa equation is analyzed, a special form of the Kadomtsev-Petviashvili hierarchy equation, which is one of the most prominent nonlinear dynamical models with two spatial and a temporal coordinate that represents the evolution of long, nonlinear, small-amplitude waves with a gradual dependence on the transverse coordinate. The governing model is investigated analytically by employing the extended generalized Riccati equation mapping approach (GREM). Furthermore, the dynamics of several wave structures are visualized in ۳D, ۲D, and contour forms for a given set of parameters using Mathematica ۱۳.۰ to demonstrate their characteristics, which has been achieved by selecting appropriate values of the relevant parameters. These solutions exhibit the characteristics of v-shaped, singular, and multi-bell-shaped, singular periodic, and multi-periodic solitons. Additionally, it has been confirmed that the model under consideration is a stable nonlinear structure by validating the established results. A range of dynamic and static nonlinear equations governing evolutionary phenomena in computational physics and other relevant domains and research areas can be solved using these approaches, as demonstrated by their simplicity, clarity, and effectiveness, as well as the computational complexities and results.

کلیدواژه ها

Fordy-Gibbons-Jimbo-Miwa equation, Soliton solutions, Kadomtsev-Petviashvili equation, nonlinear dynamics, Stability analysis, Analytical solutions

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.