Application of Artificial Intelligence in the Diagnosis, Treatment, and Management of Stuttering
- سال انتشار: 1404
- محل انتشار: دومین کنگره بین المللی هوش مصنوعی در علوم پزشکی
- کد COI اختصاصی: AIMS02_604
- زبان مقاله: انگلیسی
- تعداد مشاهده: 62
نویسندگان
BSc student in Speech and Language Pathology, Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
BSc student in Speech and Language Pathology, Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
PhD Candidate in Speech and Language Pathology, Student Research committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
چکیده
Background and Aims: Stuttering is a complex and common speech disorder, and effective treatment requires accurate diagnosis. This disorder can manifest as repetition of sounds, prolonged speech, word repetitions, or blocks, and is influenced by genetic, psychological, and environmental factors. With advancements in technology, artificial intelligence has emerged as a powerful tool in the diagnosis and treatment of stuttering. Therefore, we aimed to explore the applications of artificial intelligence in this field in this study. Methods: This narrative review aimed to identify studies on the application of artificial intelligence (AI) in stuttering diagnosis and treatment. Searches were conducted in PubMed, Scopus, and Google Scholar using combinations of Keywords: “stuttering,” “artificial intelligence,” “machine learning,” “speech therapy,” and “AI in speech disorders.” Inclusion criteria were English-language, peer-reviewed original articles or systematic reviews published between January ۲۰۲۲ and January ۲۰۲۵, focusing on AI-based assessment or intervention in stuttering. After removing duplicates and screening ۴۲ records, ۹ articles met all criteria and were included in the final review. Results: The reviewed studies revealed several key applications of AI in stuttering. Classification models (e.g., Random Forest, CNNs) accurately identified stuttering types with ۸۵–۹۳% accuracy. Voice analysis using AI achieved over ۹۰% sensitivity in detecting dysfluencies. AI tools, including ChatGPT-۴, supported clinicians with documentation and treatment planning. AI-based teletherapy platforms improved accessibility and satisfaction, particularly in underserved areas. Additionally, one study used neural and facial EMG data to predict speech patterns with ۷۸% accuracy. Conclusion: The results of the studies show that artificial intelligence has brought significant transformations in the field of stuttering, including more accurate diagnosis, personalized treatments, and classification systems. However, to fully benefit from this technology, existing challenges must be addressed. We expect further developments in this area in the future, which could improve the quality of life for individuals with stuttering.کلیدواژه ها
Artificial Intelligence, Stuttering, Machine Learningمقالات مرتبط جدید
- The Integration Of Human Expertise And Robotic Precision In Modern Surgery: An Evidence-Based Synthesis
- Applications Of Artificial Intelligence For Prediction, Diagnosis And Treatment Selection In Cardiovascular Diseases: A Narrative Review
- ارزیابی دز موثر ژنتیکی ناشی از پرتوگیری های پزشکی با شبیه سازی مونت کارلو: یک رویکرد نوین برای پیش بینی اثرات ژنتیکی و بهبود دقت اندازه گیری ها
- بررسی علل ترس از جراحی(مطالعه کیفی دلایل)
- مروری بر کاربردهای فناوری نانو در حوزه پزشکی
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.