Tensile, Flexural, and Impact Strength Analysis of a ۳D Printed Carbon Fiber Reinforced Nylon Filament

  • سال انتشار: 1404
  • محل انتشار: مجله مکانیک سازه های پیشرفته کامپوزیت، دوره: 12، شماره: 3
  • کد COI اختصاصی: JR_MACS-12-3_012
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 30
دانلود فایل این مقاله

نویسندگان

Javed Dhalait

Department of Mechanical Engineering, A. G. Patil Polytechnic Institute, Solapur, Maharashtra, ۴۱۳۰۰۸, India

Vijay Kumar Jatti

Department of Mechanical Engineering, Bennett University, Greater Noida, ۲۰۱۳۱۰, India

Shahid Tamboli

Department of Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International University, Pune, Maharashtra, ۴۱۲۱۱۵, India

Rakesh Motgi

Department of Mechanical Engineering, A. G. Patil Polytechnic Institute, Solapur, Maharashtra, ۴۱۳۰۰۸, India

چکیده

۳D printing is one of the most popular methods for prototyping and manufacturing lightweight and complex parts in recent years. The fused filament fabrication (FFF) method is preferred due to its ease of operation. Different plastics can be used as additive materials, such as filaments.  To enhance the mechanical properties of ۳D printed products researchers are developing new composite materials. By varying the parameters associated with the manufacturing of these materials, mechanical properties can be altered. This study aimed to find out the effect of printing parameters in Carbon fiber-reinforced Nylon to get better mechanical properties. In this study chopped carbon fibers are reinforced in Nylon base material to get the ‘FFF ۳D printing’ filament material. Infill density and shell perimeter were varied to get different specimen types. The specimens were prepared as per the ASTM standards for the tensile, flexural, and impact testing.  Machine learning is used to predict the parameters for tensile, flexural, and impact strength. The study shows the effect of printing parameters on mechanical properties like flexural strength and tensile strength. Infill percentage shows a significant effect on mechanical strength. The ML regression model shows higher accuracy for tensile strength than the flexural and impact strength.

کلیدواژه ها

Fused filament fabrication (FFF), shell count, infill density, Optimization, machine learning

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.