A Simulation Approach to Predict Uniaxial Compressive Strength of Shale and Sandstone Samples Using Artificial Neural Network

  • سال انتشار: 1392
  • محل انتشار: اولین کنفرانس ملی مهندسی ژئوتکنیک
  • کد COI اختصاصی: GEOTEC01_491
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 1290
دانلود فایل این مقاله

نویسندگان

Danial Jahed Armaghani

Ph.D Student, University Technology Malaysia, UTM

Mohsen Hajihassani

Ph.D Student, University Technology Malaysia, UTM

Koohyar Faizi

Postgraduate Student, University Technology Malaysia, UTM

Edy Tonnizam Mohammad

Assoc. Prof. Dr. University Technology Malaysia, UTM

چکیده

Proper determination of Unconfined Compressive Strength (UCS) of rocks is a crucial subject in designof geotechnical structures. Although direct determination of UCS through laboratory test appears to berelatively simple, obtaining proper core segments specifically for weathered rocks is difficult andexpensive. It is well established that UCS can be estimated indirectly using rock index properties. Incomparison to the direct test, indirect prediction of UCS is relatively easier and cheaper. This studyinvolves extensive laboratory tests on 32 datasets of shale and sandstone in various weathering gradesobtained from excavation site in Johor, Malaysia. The laboratory tests include UCS test, BrazilianTensile Strength (BTS) test, Point Load Index Test (Is(50)), P-wave velocity (Vp) test Schmidt HammerRebound Number (Rn) and Dry Density (DD) measurement. The application of Artificial Neural Network(ANN) in UCS prediction is highlighted in this study. For this reason, BTS, Is(50), Vp, Rn and DD wereconsidered as input parameters while the UCS was set to be the output. The ANN results shows thesuperiority of ANN in UCS prediction

کلیدواژه ها

Unconfined Compressive Strength UCS, Laboratory Tests, Artificial Neural Network

مقالات مرتبط جدید

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.