A Density Functional Theory Study of Adsorption Ethionamide on the Surface of the Pristine, Si and Ga and Al-Doped Graphene
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 75
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJCCE-40-6_001
تاریخ نمایه سازی: 17 خرداد 1404
چکیده مقاله:
In this research, the adsorption behavior of pristine, Si- and Ga- and Al-doped graphene is investigated toward ethionamide (EA) using Density Functional Theory (DFT) calculations. Total energies and geometry optimizations were obtained and Density of State (DOS) analysis was performed at B۳lyp level of theory with the ۶-۳۱G* basis set. The adsorption energy (Ead) between EA and the pristine, Si-, Ga- and Al-doped graphene is changed in the following order: Ga-Complex-N(ring) > Al- Complex-N(ring) > Si-Complex-N(ring) > Complex-S. The Ead of the Graphene-EA complex is -۲.۵۵۲ kcal/mol, which is low and shows that the adsorption is physical. The % ΔEg= -۵۹.۶۱% for Si-doped graphene EA shows the high sensitivity of the Si-doped graphene to the adsorption of EA. The Eg for Ga-doped graphene-EA decreases significantly from ۲.۳۵ to ۱.۱۱ eV and the rate of change is %ΔEg = -۵۲.۷۵%, showing the high sensitivity of Ga-doped graphene to the adsorption of EA. However, the high Ead of -۳۶.۶۶ kcal/mol shows that the Ga-doped graphene can be used as a suitable sensing device only at higher temperatures. The % ΔEg= -۵۸.۹۸ % for Al-doped graphene-EA indicates the high sensitivity of the Al-doped graphene to the adsorption of EA. The Ead of -۳۴.۵۳ kcal/mol can be used as a suitable sensing device only at higher temperatures.
کلیدواژه ها:
نویسندگان
Esmail Vessally
Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN
Mahla Musavi
Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN
Mohammad Reza Poor Heravi
Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :