Determination of Suitable Operating Conditions of Fluid Catalytic Cracking Process by Application of Artificial Neural Network and Firefly Algorithm

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 53

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJCCE-37-6_016

تاریخ نمایه سازی: 17 خرداد 1404

چکیده مقاله:

Fluid Catalytic Cracking (FCC) process is a vital unit to produce gasoline. In this research, a feed forward ANN model was developed and trained with industrial data to investigate the effect of operating variables containing reactor temperature feed flow rate, the temperature of the top of the main column and the temperature of the bottom of the debutanizer tower on quality and quantity of gasoline, LPG flow rate and process conversion. Eventually, validated ANN model and firefly algorithm which is an evolutionary optimization algorithm were applied to optimize the operating conditions. Three different optimization cases including maximization of RON (as the parameter which demonstrates the quality of the gasoline), gasoline flow rate and conversion were investigated. In order to obtain the maximum level of targeted output variables, inlet reactor temperature, temperature of the top of the main column, temperature of the bottom of debutanizer column and feed flow rate should respectively set at ۵۲۵,۱۳۸, ۱۶۹ºC and ۴۳۰۰۰ bbl/day. Also, sensitivity analysis between the input and output variables were carried out to derive some effective rule-of- thumb to facilitate the operation of the process under unsteady state conditions. The result introduces a methodology to compensate for the negative effect of undesirable variation in some operating variables by manipulating the others.

نویسندگان

Sorood Zahedi Abghari

Department of Upgrading Process, Division of Refinery Process Technology Development, Research Institute of Petroleum Industry (RIPI), Tehran, I.R. IRAN

Ali Imani

Department of Chemical Engineering, MahshahrBranch, Islamic Azad University. Mahshahr, I.R. IRAN

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Zahedi Abghari S., Alizadehdakhel A., Mohaddecy R.S., Alsairafi A.A., Experimental ...
  • Hayati R., Zahedi Abghari S., Sadighi S., Bayat M., Development ...
  • Zahedi Abghari S., Shokri S., Baloochi B., Marvast M.A., Ghanizadeh ...
  • Zahedi Abghari S., Towfighi Darian J., Karimzadeh R., Omidkhah M.R.,Determination ...
  • Heydari M., Ebrahim H.A., Dabir B., Modeling of an Industrial ...
  • Elamurugan P., Dinesh Kumar D., Modeling and Control of Fluid ...
  • Mythily M., Manamalli D., Nandhini R.R., Dynamic Modeling and Improvement ...
  • Affum H.A., Adu P.S., Dagadu C.P.K., Addo M.A., Mumuni I.I., ...
  • Dagade K.K., Puyate Y.T., Modelling and Simulation of Industrial FCC ...
  • Dagde K.K., Puyate Y.T., Modeling Catalyst Regeneration in an Industrial ...
  • Baldessae F., Negrao C.O.R., Simulation of Fluid Catalytic Cracking Risers- ...
  • Zahedi.Abghari S., Sadi M., Application of Adaptive Neuro-Fuzzy Inference System ...
  • Tarjomannejad A., Prediction of the Liquid Vapour Pressure using the ...
  • Hadi N., Niaei A., Nabavi S.R., Alizadeh R., Navaei Shirazi ...
  • Jiang B., Zhang F., Sun Y., Zhou X., Dong J., ...
  • Mohammadzadeh A., Ramezani M., Ghaedi A.M., Synthesis and Characterization of ...
  • Raja M.A.Z., Shah F.H., Khan A.A., Khan N.A., Design of ...
  • Ronda A., Martin Lara M.A., Almendros A.L., Perez A., Blazquez ...
  • Mousavi M., Avami A., Modeling and Simulation of Water Softening ...
  • Saghatoleslami N., Mousavi M., Sargolzaei J., A Neuro-Fuzzy Model for ...
  • Zeydan M., The Comparison of Artificial Intelligence and Traditional Approaches ...
  • Bispo V.D.S., Sandra E., Silva R.L., Meleiro L.A.C., Modeling, Optimization ...
  • Kasat R.B., Gupta S.K., Multi-Objective Optimization of an Industrial Fluidized-Bed ...
  • Chen C., Yang B., Yuan J., Wang Z., Wang L., ...
  • Xin-She Yang, “Nature- Inspired Methaheuristic Algorithm”, ۲nd ed., Luniver Press ...
  • Froment Gilbert F., Bischoff Kenneth B., “Chemical Reactor Analysis and ...
  • نمایش کامل مراجع