Adsorption of Cyclohexane onto Activated Nanoporous Graphene: Modeling Using Artificial Neural Network
- سال انتشار: 1402
- محل انتشار: Iranian Journal of Chemistry and Chemical Engineering، دوره: 42، شماره: 3
- کد COI اختصاصی: JR_IJCCE-42-3_006
- زبان مقاله: انگلیسی
- تعداد مشاهده: 55
نویسندگان
Department of Chemical Engineering, Saveh Islamic Azad University, I.R. IRAN
Department of Chemical Engineering, Saveh Islamic Azad University, I.R. IRAN
Department of Chemical Engineering, Saveh Islamic Azad University, I.R. IRAN
Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, I.R. IRAN
چکیده
Industries pollute the environment by emitting organic substances known as Volatile Organic Compounds (VOC). One of the outstanding materials utilized to eliminate VOCs is nanoporous graphene. However, graphene's physical and chemical characteristics are influenced by a range of factors, including activation temperature, mass ratio, activation duration, adsorption capacity, N۲ adsorption-desorption, and morphology, Among other factors, the porosity of graphene is one of the crucial which has a direct influence on the adsorption capacity. In the current study, the adsorption capacity of graphene was investigated using cyclohexane and n-hexane adsorbents. In addition, the neural network has been employed to predict the adsorption capacity of graphene, and the Levenberg–Marquardt backpropagation (LM-BP) mechanism was utilized to determine model accuracy. The results show that at an activation temperature of ۷۰۰°C, and mass ratio of ۶, cyclohexane displayed a better performance with an adsorption capacity of ۵۰۰ mg/g, as a comparison to n-hexane. The model demonstrated a suitable prediction with a correlation coefficient of ۰.۹۹۹۶۶ (R۲) within the range of cyclohexane parameters such as impregnation ratio, activation time, and activation temperature between ۳ to ۹, ۱۲۰ to ۱۸۰ min, and ۵۰۰ to ۷۰۰°C respectively.کلیدواژه ها
Adsorption, artificial neural network (ANN), Chemical vapor deposition, Cyclohexane, n-hexane, nanoporous grapheneاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.