Optimization and Simulation of Evaluating the Impact of Reactivity Changes in a Typical Pressurized Water Reactor Core with Artificial Neural Networks
- سال انتشار: 1404
- محل انتشار: Iranian Journal of Chemistry and Chemical Engineering، دوره: 44، شماره: 4
- کد COI اختصاصی: JR_IJCCE-44-4_023
- زبان مقاله: انگلیسی
- تعداد مشاهده: 29
نویسندگان
Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN
Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, I.R. IRAN Tehran, Iran
چکیده
Pressurized Water Reactors (PWRs) are integral to the nuclear energy sector, necessitating precise modeling of their dynamic behavior for improved safety and performance. This study introduces a novel approach to simulating PWR dynamics using Artificial Neural Networks (ANNs) optimized by three methods: Levenberg-Marquardt (trainlm), Gradient Descent with Momentum (traingdm), and the metaheuristic Whale Optimization Algorithm (WOA). The ANN model is trained on differential equations characterizing PWR dynamics and is evaluated under various reactivity scenarios to analyze key parameters, including thermal and hydrodynamic parameters. The results demonstrate that the optimization method significantly affects the ANN's performance. WOA outperforms other techniques, achieving the lowest mean squared error (۰.۰۰۱۸), highest prediction accuracy (۹۹.۱%), and faster convergence for complex reactor scenarios. Furthermore, the innovative integration of WOA provides robust predictions for reactivity-induced variations, emphasizing its superiority in optimizing ANN models for real-time applications. This research uniquely combines reactor physics and chemical engineering principles, offering a comprehensive analysis of how reactivity changes influence dynamic and chemical behavior in PWRs. By bridging these domains, the study highlights the potential of advanced machine learning methods in enhancing reactor safety and efficiency under diverse operational conditions.کلیدواژه ها
Pressurized Water Reactor, Artificial neural network, Machine Learning, Reactivity, Whale Optimization Algorithm, Thermal and hydrodynamic parametersاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.