A Novel Approach for Accurate Wind Speed Time Series Forecasting Using ICEEMDAN Decomposition and Sample Entropy through Integration of Deep Learning Models
- سال انتشار: 1405
- محل انتشار: ماهنامه بین المللی مهندسی، دوره: 39، شماره: 2
- کد COI اختصاصی: JR_IJE-39-2_003
- زبان مقاله: انگلیسی
- تعداد مشاهده: 46
نویسندگان
Department of Electronics, Faculty of Technology, University of M’sila, Lab. G.E. University Pole, Algeria
Department of Industrial Engineering, Faculty of Technology, Laboratory of Automation and Manufacturing, University of Batna ۲ (Mostefa Ben Boulaïd), Batna, Algeria
INSA Rennes, INRIA/ IRISA Beaulieu Campus ۳۵۰۴۲ Rennes, France
Department of Electronics, Faculty of Technology, University of M’sila, Lab. G.E. University Pole, Algeria
چکیده
This study proposes a novel hybrid model for wind speed forecasting (WSF) based on a three-stage framework comprising decomposition, feature selection, and forecasting. The proposed approach employs Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) to decompose wind speed time series into Intrinsic Mode Functions (IMFs). A distinctive contribution of this study is the use of sample entropy as a feature selection mechanism to identify the most relevant Intrinsic Mode Functions (IMFs). The selected IMFs are then integrated through a classification-based fusion technique, significantly enhancing forecasting accuracy and distinguishing this approach from conventional methods. Two distinct forecasting approaches are evaluated using multiple performance metrics, including RMSE, MAE, MAPE, and R². The first approach applies the fusion technique directly to the original wind speed time series, while the second incorporates ICEEMDAN to decompose the time series. Experimental validation using two real-world datasets from Algeria demonstrates the superiority of the proposed hybrid model over individual forecasting models, yielding significant improvements in prediction accuracy, robustness, and stability. These findings underscore the effectiveness of the three-stage framework, offering a reliable and efficient solution for short-term wind speed forecasting, with potential applications in renewable energy management and grid optimization.کلیدواژه ها
wind speed, Times Series, deep neural networks, Sample Entropy, Decomposition, Fusionاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.