Forecasting long-term trends of the COVID-۱۹ outbreak in Yazd with an SVIR model
- سال انتشار: 1403
- محل انتشار: مجله علوم ریاضی کاسپین، دوره: 13، شماره: 2
- کد COI اختصاصی: JR_CJMS-13-2_005
- زبان مقاله: انگلیسی
- تعداد مشاهده: 83
نویسندگان
Department of Mathematical Science, Yazd University, Yazd, Iran
Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
چکیده
This article examines the transmission of COVID-۱۹ from a mathematical model perspective, analyzing its spread pattern. Given the virus's adherence to standard epidemic disease transmission principles and the effectiveness of vaccination in mitigating and controlling its spread, we employ the SVIR model to demonstrate the disease's progression in Yazd. The data used in this study was provided by the medical care monitoring center of Yazd Shahid Sadoughi University of Medical Sciences, Yazd, Iran, for ۷۷۰ days between September ۲۷, ۲۰۲۰ to November ۵, ۲۰۲۲. To establish thelparameters, we utilized the genetic algorithm (GA) to minimize the cost function between the model's prediction and the real data.Additionally, we conducted our simulations using Matlab software. Identifying the factors that contribute to the spread of the virus through mathematical modeling can be a crucial step towards controlling the disease, given its catastrophic impact on the economy, society, and health.کلیدواژه ها
Epidemic mode, SVIR, Public health, Pandemic, Covid-۱۹اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.