Potential of machine learning algorithms for predicting the properties of medium-density fiberboard (MDF): preliminary results
- سال انتشار: 1403
- محل انتشار: اولین همایش بین المللی هوش مصنوعی
- کد COI اختصاصی: IAICONF01_046
- زبان مقاله: انگلیسی
- تعداد مشاهده: 114
نویسندگان
Department of Wood and Paper Science and Technology, Faculty of Natural Resources, PhD student, Tarbiat Modares University, Noor, Mazandaran, Iran
Department of Wood and Paper Science and Technology, Faculty of Natural Resources, Associate Professor, Tarbiat Modares University, Noor, Mazandaran, Iran
Department of Forestry, Faculty of Natural Resources, Associate Professor, Tarbiat Modares University, Noor, Mazandaran, Iran
Department of Artificial Intelligence, Faculty of Computer Engineering, Associate Professor, Amirkabir University of Technology, Tehran, Iran
Quality Manager at Kimia Choob, Golestan Co, Sari, Mazandaran, Iran
Institute of Building Materials and Biobased Products, School of Architecture, Wood and Civil Engineering, Professor, Bern University of Applied Sciences (BFH), Biel, Switzerland
چکیده
Traditional quality control methods in the wood-based panel industry, especially for medium-density fiberboard, are insufficient to compete in the current market. In addition, due to the rapid growth of wood-based panel production and the need to provide competitive products in the market, there is an unprecedented need to explore new methods of quality control throughout the production process. Therefore, it seems necessary to use new quality control methods based on artificial intelligence and machine learning algorithms, because they have high predictive and optimization capabilities. The aim of this research is to develop suitable model to identify the most important and effective variables in the production process of industrial fiberboards and finally to predict the properties of the final product such as the bending strength (MOR) based on industrial data. For this purpose, the R software environment was used to implement the random forest algorithm to identify important variables. The performance of the model was evaluated using the coefficient of determination (R²) and the root mean square error (RMSE). The results showed moderate accuracy with an R² value of ۰.۴۹, which means that the model explained ۴۹% of the variance of the dependent variable. The RMSE was ۱.۵۶۵, indicating a low prediction error. These metrics demonstrate the robustness and reliability of the random forest algorithm in managing complex data sets and producing accurate predictions.کلیدواژه ها
machine learning, wood-based panel, quality control, random forest, feature selectionمقالات مرتبط جدید
- انتخاب هوشمند معماری بهینه نرمافزار مبتنی بر ویژگی های پویا پروژه با بهرهگیری از شبکه های عصبی گراف زمانی و الگوریتم Random Walk
- تاثیر هوش مصنوعی بر طراحی و توسعه نرمافزارها
- مروری جامع بر وب معنایی: از مبانهای نظری تا چالشهای پیاده سازی در بستر فناوری اطلاعات
- The Impact of Skewness on Electricity Contract Purchase Decisions: A Sensitivity-Based Analysis
- تکامل خودکار کد با استفاده از مدل های زبانی پیشرفته در توسعه نرم افزار
اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.