Noise-robust gearbox fault detection: A deep learning approach

  • سال انتشار: 1403
  • محل انتشار: دوفصلنامه مبانی نظری و کاربردی علم آکوستیک و ارتعاشات، دوره: 10، شماره: 1
  • کد COI اختصاصی: JR_TAVA-10-1_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 32
دانلود فایل این مقاله

نویسندگان

Navidreza Ghanbari Kohyani

M.Sc. Student, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, IRAN

Yassin Riyazi

M.Sc. Student, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, IRAN

Farzad A. Shirazi

Assistant Professor, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, IRAN

Ahmad Kalhor

Associate Professor, School of Electrical Engineering, College of Engineering, University of Tehran, Tehran, IRAN

چکیده

We introduce a novel approach to enhance gearbox fault diagnosis by integrating Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs) for vibrational data analysis. Our method aims to improve fault detection accuracy, particularly in identifying subtle anomalies like broken teeth. However, real-world data often contains noise, which can hinder the effectiveness of such models. To address this challenge, we incorporate Singular Value Decomposition (SVD) pooling layers within the model. Our methodology starts with continuous wavelet transform (CWT), applied to the vibrational data to reveal crucial frequency-domain features. Concurrently, a CNN, using the Inception architecture, extracts spatial features. Simultaneously, LSTM networks capture temporal patterns. The unique feature representations from the CNN and LSTM branches are fused, creating a holistic feature set incorporating spatial, material, and frequency-domain information. This integrated feature set is then classified using a fully connected neural network. Our method's effectiveness is rigorously validated through comprehensive experiments on a diverse dataset. The results demonstrate exceptional accuracy in identifying gearbox faults, even in the early stages. This research advances predictive maintenance, offering a precise and comprehensive approach to gearbox fault diagnosis. In conclusion, the fusion of LSTM and CNN architectures for vibrational data analysis holds promise for gearbox fault diagnosis, benefiting industries reliant on machinery reliability and operational efficiency.

کلیدواژه ها

Gearbox Fault Diagnosis, Long short-term memory (LSTM), Convolutional Neural Networks (CNN), Continuous Wavelet Transform (CWT), Noise Robustness

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.