Categorization of Mineral Resources using Random Forest Model in a Copper Deposit in Peru
- سال انتشار: 1404
- محل انتشار: مجله معدن و محیط زیست، دوره: 16، شماره: 3
- کد COI اختصاصی: JR_JMAE-16-3_009
- زبان مقاله: انگلیسی
- تعداد مشاهده: 99
نویسندگان
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Faculty of Chemical Engineering, National University of the Altiplano of Puno, Puno, Peru
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Department of Mining Engineering, Universidad Nacional San Cristobal de Huamanga, Ayacucho, Peru
Department of Industrial Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Faculty of Chemical Engineering, National University of the Altiplano of Puno, Puno, Peru
Faculty of Industrial Process Engineering, National University of Juliaca, Juliaca, Peru
چکیده
This work aimed to categorize mineral resources in a copper deposit in Peru, using a machine learning model, integrating the K-prototypes clustering algorithm for initial classification and Random Forest (RF) as a spatial smoother. A total of ۳۱۸,۴۴۳ blocks were classified using geostatistical and geometric variables derived from Ordinary Kriging (OK) such as kriging variance, sample distance, number of drillholes, and geological confidence. The model was trained and validated using precision, recall, and F۱-score metrics. The results indicated an overall accuracy of ۹۷%, with the measured category achieving ۹۸% precision and an F۱-score of ۰.۹۸. The total estimated tonnage was ۵,۸۵۹.۳۶ Mt, distributed as follows: ۱,۴۴۶.۱۳ Mt (measured), ۲,۲۴۹.۲۲ Mt (Indicated), and ۲,۱۶۴.۰۱ Mt (Inferred), with average copper grades of ۰.۴۳%, ۰.۳۳%, and ۰.۳۱% Cu, respectively. Compared to the traditional geostatistical methods, this hybrid approach improves classification objectivity, spatial continuity, and reproducibility, minimizing abrupt transitions between categories. The RF model proved to be a robust tool, reducing classification inconsistencies and better capturing geological uncertainty. Future studies should explore hybrid models (K-means with RF, ANN with K-Prototypes, gradient boosting, and deep learning) and incorporate economic variables to optimize decision-making in resource estimation.کلیدواژه ها
Random Forest, mineral resource categorization, Geostatistics, kriging varianceاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.