Predicting uniaxial compressive strength of different rocks using principal component analysis and deep neural network

  • سال انتشار: 1403
  • محل انتشار: مجله زمین-معدن، دوره: 2، شماره: 2
  • کد COI اختصاصی: JR_JGM-2-2_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 85
دانلود فایل این مقاله

نویسندگان

Mojtaba Amiri

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.

Mehrdad Amiri

Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.

Seyed Sajjad Karrari

-Department of Geology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran, - Omranazma conculting company

Siamak Moradi

Department of Geology, Faculty of Sciences, Kharazmi University, Tehran, Iran

چکیده

Uniaxial compressive strength (UCS) is one of the most practical parameters of rock mechanics. It is an important and basic geomechanical factor in the design of tunnels, dams, and underground drilling. The direct method for determining the UCS in the laboratory is expensive and time-consuming. Therefore, several empirical equations have been developed to estimate the UCS from the results of index and physical tests of rock. Nevertheless, numerous empirical models available in the literature often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.  This work aims to estimate the UCS of rocks using a machine learning-based approach. More specifically, a deep neural networks (DNN) model is designed to predict the UCS from the physical and mechanical characteristics of rocks. ۲۲۱ different rock block samples were collected from various areas of Iran. The physical and mechanical properties include Dry density (ρ), P-wave velocity ( ), Point load test ( ), Brazilian tensile strength (BTS), and water absorption ( ). In order to reduce the dimension of the input features, before the DNN model, principal component analysis (PCA) is employed. A combination of the PCA and the proposed DNN model is found to be efficient and useful in predicting UCS. The mean square error of the proposed method with and without the feature reduction stage was ۰.۰۰۶۸ ± ۰.۰۰۱ and ۰.۰۰۶۷ ± ۰.۰۱۳, respectively.

کلیدواژه ها

Physical properties, Mechanical properties, Uniaxial compressive strength (UCS), Deep neural network (DNN)

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.