A Review of Energy-efficient Task Schedulers in Fog Computing Systems for AI-IoT Environment

  • سال انتشار: 1403
  • محل انتشار: سومین کنفرانس ملی انرژی، اتوماسیون و هوش مصنوعی
  • کد COI اختصاصی: PSAIC03_095
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 135
دانلود فایل این مقاله

نویسندگان

Yekta Soltani

M.Sc. Student of Computer Science Department, Faculty of Mathematic Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Fahimeh Yazdanpanah

Associate Professor of Computer Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Mohammad Alaei

Associate Professor of Computer Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

چکیده

In the artificial intelligence and internet of things era, huge amount of computations and the surge in data generation leads to increase network traffic, making computational offloading essential for end users with limited resources. Cloud-fog computing systems refer to the utilization of non-local computing resources such as various servers, distributed storage and processing units via internet or intranet. Fog computing has emerged as a complementary solution to cloud computing, enhancing data processing and energy efficiency in low-power networks using in-node and edge processing. This paper presents a review on task scheduling techniques for fog computing systems. The focus of the paper is on the energy-efficient and low power high performance scheduler for fog-based architectures in internet of thing environments. As a result, we found that utilizing artificial intelligence and machine learning and also reinforcement learning approaches techniques for optimizations in designing task schedulers and offloading provides high performance and low power fog-based systems in IoT environment.

کلیدواژه ها

IoT, Fog-computing, Task scheduler, Microservice, Artificial intelligence, Machine learning

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.