Integrating Artificial Intelligence into Decision Theory Models: Enhancing Accuracy and Efficiency in Decision -Making

  • سال انتشار: 1403
  • محل انتشار: سومین کنفرانس ملی انرژی، اتوماسیون و هوش مصنوعی
  • کد COI اختصاصی: PSAIC03_084
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 58
دانلود فایل این مقاله

نویسندگان

Ali Ghani Nori Alsaedi

Department of Industrial Management, Isfahan Branch, Islamic Azad University, Isfahan, Iran

Mohammad Jalali Varnamkhasti

Department of Science, Isfahan Branch, Islamic Azad University, Isfahan, Iran

Husam Jasim Mohammed

Department of Science, Al-Karkh University of Science, Baghdad, Iraq

Mojtaba Aghajani

Department of Industrial Management, Isfahan Branch, Islamic Azad University, Isfahan, Iran

چکیده

Integrating Artificial Intelligence (AI) into decision theory models represents a significant step forward in improving how we make decisions. In this article, we take a closer look at how AI can be systematically woven into four well-known decision-making models: Decision Trees, Multi-Criteria Decision Analysis (MCDA), and Linear Programming (LP). By tapping into the predictive capabilities of machine learning, the flexibility of AI algorithms, and the analytical power of big data, organizations can greatly enhance their decision-making processes. AI helps with processing data in real time, managing changing constraints, and understanding complex relationships between variables, leading to insights that were once out of reach. Through practical examples and methodologies, we show how AI can refine each decision model, ultimately resulting in smarter decisions and improved performance for organizations. This exploration highlights the importance for modern businesses to adopt AI within traditional decision-making frameworks, paving the way for more agile and effective decision-making in a rapidly changing world.

کلیدواژه ها

Decision Theory, Model, Integrating, Artificial Intelligence

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.