Machine Learning Techniques For Forecasting Demand Of Energy In Supply Chain: A Case Study In Iran
- سال انتشار: 1403
- محل انتشار: هجدهمین کنفرانس بین المللی پیشرفت های اخیر در مدیریت و مهندسی صنایع
- کد COI اختصاصی: RMIECONF18_010
- زبان مقاله: انگلیسی
- تعداد مشاهده: 127
نویسندگان
Department of Industrial Engineering, Yazd University, Yazd, Iran
Department of Industrial Engineering, Yazd University, Yazd, Iran
چکیده
In today's ever-evolving world, the effective management of energy resources stands as a paramount concern. Iran confronts challenges in harmonizing supply and demand, despite being endowed with nearly ۱۰ percent of the world's total natural resources. This disparity is primarily attributable to its substantial energy consumption. In ۲۰۲۲, due to deficiencies in management, instances arose wherein Iranians experienced interruptions in access to electricity during the summer and gas during the winter, extending through at least part of the day. Beyond its impact on individuals, these circumstances wield significant influence over manufacturers and hospitals, entities that possess a direct and indispensable connection to people's lives. Hence, in view of the gravity of this issue, it would be advantageous to employ intelligent techniques capable of furnishing valuable insights to authorities for addressing similar challenges in the forthcoming years. To realize this objective, the present research will harness two machine learning methods, Autoregressive models and ARIMA Model, and one deep learning method, Long Short-Term Memory, to forecast future energy demand and subsequently assess the efficacy of these methodologies. The results demonstrate superior performance when compared to both machine learning methods.کلیدواژه ها
Machine Learning, Energy Demand, Demand Forecasting, Autoregressive models, Energy Supply chainاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.