Subspace/Discriminate Ensemble-based Machine Learning on Visible/Near-infrared Spectra as an Effective Procedure for Non-destructive Safety Assessment of Spinach

  • سال انتشار: 1404
  • محل انتشار: مجله تحقیقات بیومکانیسم و ​​بیوانرژی، دوره: 4، شماره: 1
  • کد COI اختصاصی: JR_BBR-4-1_005
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 90
دانلود فایل این مقاله

نویسندگان

Bahareh Jamshidi

Smart Agricultural Research Department, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

Najmeh Yazdanfar

Iranian Institute of Research and Development in Chemical Industries, ACECR, Karaj, Iran.

چکیده

In this study, an orthogonal signal correction (OSC)-based partial least squares (PLS) model and ensemble-based machine learning classifiers, combined with visible/near-infrared (Vis/NIR) spectroscopy, were proposed for non-destructive nitrate prediction in spinach leaves and sample safety evaluation. The OSC method was applied before developing the PLS model to enhance prediction accuracy. Spinach safety assessment was based on the maximum permissible nitrate accumulation level. Various ensemble classifiers, including subspace/discriminate, subspace/k-nearest neighbor, boosted trees, bagged trees, and random under-sampling boosted trees, were evaluated for distinguishing safe and unsafe samples. The best classification results were obtained using the subspace/discriminate ensemble classifier, achieving sensitivity, specificity, and accuracy of ۹۵.۲۴%, ۹۸.۷۳%, and ۹۸.۴۵% for the calibration dataset and ۱۰۰%, ۹۱.۸%, and ۹۲.۳۱% for external validation. The receiver operating characteristic (ROC) curve indicated superior discrimination ability, with an area under the curve (AUC) of ۰.۹۵. Additionally, the best model demonstrated a high prediction speed of approximately ۲۸۰ observations per second. These findings highlight that combining Vis/NIR spectroscopy with the subspace/discriminate ensemble classifier provides an effective, rapid, and non-invasive method for detecting nitrate contamination in spinach leaves, making it a promising approach for food safety monitoring.

کلیدواژه ها

Intelligent algorithms, Near-infrared spectroscopy, orthogonal signal correction, Receiver operating characteristic, Subspace/discriminate ensemble

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.