A Transfer Learning Method for Intelligent Load Shedding using Graph Convolutional Network considering Unknown Faults

  • سال انتشار: 1404
  • محل انتشار: مجله تحقیق و فناوری در صنعت برق، دوره: 4، شماره: 1
  • کد COI اختصاصی: JR_RTEI-4-1_001
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 102
دانلود فایل این مقاله

نویسندگان

Nazanin Pourmoradi

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran

Mohammad Taghi Ameli

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran, Iran

چکیده

Event-based load shedding (ELS) is a vital emergency countermeasure against transient voltage instability in power systems. Deep learning(DL)--based ELS has recently achieved promising results. However, in power systems, faults may occur that are not in the training database, reducing the model's effective performance. In this situation, it is necessary to update the model. On the other hand, updating the model for new faults requires a large database. To address the problem of unknown faults, this paper proposes a transfer learning-based graph convolutional network (GCN) model that allows updating the model with a small database. In the first step, an ELS model is trained with a large database. Then, if a new fault occurs, the model is transferred to the new fault and updated using transfer learning and with a small database. To evaluate the performance of the proposed model, it was implemented and tested on the IEEE ۳۹ bus system. The results show that the proposed model has high-performance accuracy and can be updated with a small database when encountering an unknown fault. According to the results, the proposed model has reduced the database size by ۷۸.۹۱% for optimal updating.

کلیدواژه ها

Graph Convolutional Network, Unknown Fault, Transfer learning, Event-based Load Shedding, Small Database

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.