Optimizing Job Rotation through Biorhythm Analysis and Artificial Neural Network (ANN) Methodology
- سال انتشار: 1404
- محل انتشار: مجله ایرانی مطالعات مدیریت، دوره: 18، شماره: 2
- کد COI اختصاصی: JR_JIJMS-18-2_007
- زبان مقاله: انگلیسی
- تعداد مشاهده: 71
نویسندگان
Department of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran
Department of Economics, Management and Administrative Sciences, Semnan University, Semnan, Iran
چکیده
Job rotation is defined as workers rotating between tasks with different exposure levels and occupational demands. Implementing effective job rotation strategies poses challenges, especially in determining the optimal timing and sequencing of rotations to ensure that employees are suitably matched with job roles. Existing studies indicate that many expectations regarding job rotation have not been fully achieved, as the prediction and measurement of its impact on organizational and individual productivity have not been adequately researched. A critical factor influencing individual productivity is the fluctuation in employee performance, driven by the cyclical mental and physical characteristics of employees, known as biorhythms. Current job rotation models do not adequately address biorhythms, which are inherently difficult to predict. No methodologies have been proposed to model, analyze, or predict these fluctuations in the context of job rotation strategies. This research addresses this gap by developing an artificial neural network (ANN) algorithm capable of modeling complex biorhythmic patterns derived from employee performance data. The proposed model refines job rotation strategies by optimizing the alignment between worker capacities and workstation demands. The method is also applied to an industrial case study, demonstrating its applicability and potential to improve overall operational efficiency.کلیدواژه ها
Job Rotation, Multi Criteria Decision Making, artificial neural network (ANN), Intelligent decision support systems, Biorhythmic analysisاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.