A SOFT SEGMENT MODELING APPROACH FOR DURATION MODELING IN PHONEME RECOGNITION SYSTEMS

  • سال انتشار: 1383
  • محل انتشار: فصلنامه مهندسی برق مدرس، دوره: 4، شماره: 1
  • کد COI اختصاصی: JR_MJEEMO-4-1_004
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 45
دانلود فایل این مقاله

نویسندگان

فربد رزازی

Amirkabir university of technology

ابوالقاسم صیادیان

Amirkabir university of technology

چکیده

The geometric distribution of states duration is one of the main performance limiting assumptions of hidden Markov modeling of speech signals. Stochastic segment models, generally, and segmental HMM, specifically, overcome this deficiency partly at the cost of more complexity in both training and recognition phases. In this paper, a new duration modeling approach is presented. The main idea of the model is to consider the effect of adjacent segments on the probability density function estimation and evaluation of each acoustic segment. This idea not only makes the model robust against segmentation errors, but also it models gradual change from one segment to the next one with a minimum set of parameters. The proposed idea is analytically formulated and tested on a TIMIT based context independent phoneme classification system. During the test procedure, the phoneme classification of different phoneme classes was performed by applying various proposed recognition algorithms. The system was optimized and the results have been compared with a continuous density hidden Markov model (CDHMM) with similar computational complexity. The results show slight improvement in phoneme recognition rate in comparison with standard continuous density hidden Markov model. This indicates improved compatibility of the proposed model with the speech nature.

کلیدواژه ها

Automatic Speech Recognition, Duration Modeling, Expectation Maximization Algorithm, Segmental HMM, Soft Segment Modeling, بازشناسی گفتار, مدلسازی کشش زمانی, مدل مارکوف, مدل مارکوف پنهان قطعه ای, مدل قطعه ای اتفاقی, قطعه بندی نرم

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.