A Combined Harris Hawks and Dragonfly Optimization Approach for Feature Selection in MLP-Based DDoS Attack Detection
- سال انتشار: 1404
- محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 8
- کد COI اختصاصی: JR_IJE-38-8_014
- زبان مقاله: انگلیسی
- تعداد مشاهده: 71
نویسندگان
Faculty of Technology and Engineering, University of Mazandaran, Babolsar, Iran
Biomedical Engineering Department, Al-Mustaqbal University, Hillah ۵۱۰۰۱, Iraq
Faculty of Technology and Engineering, University of Mazandaran, Babolsar, Iran
چکیده
In this paper, a new intrusion detection system (IDS) is presented to deal with distributed denial of service (DDoS) attacks. A combined algorithm based on Harris Hawks Optimization (HHO) and Dragonfly Algorithm (DA) is proposed to select relevant features and eliminate irrelevant and redundant features from the NSL-KDD dataset. The extracted features are presented to a multilayer perceptron (MLP) neural network. This network (as a classifier) divides the network traffic into two classes, normal and attack categories. Performance of the proposed model is evaluated with two standard and widely-used datasets in the field of intrusion detection: NSL-KDD and UNSW-NB۱۵. The results of the simulations clearly show the superiority of the proposed method compared to the previous methods in terms of critical evaluation criteria such as accuracy, precision, recall, and F-Measure. Specifically, the proposed method exhibited improvements of ۹۶.۹%, ۹۷.۶%, ۹۶%, and ۹۶.۸% in these metrics, respectively (compared to the baseline method). The main reason for these improvements is the ability of the combined algorithm to intelligently select the optimal features and reduce the dimensions of the data. This careful selection of features allows the MLP neural network to focus on critical information, increasing the classification accuracy and ultimately improving the performance of the intrusion detection system. This research showed that combining optimization algorithms and machine learning works well. So, it is effective for tackling DDoS attacks. It can lead to better intrusion detection systems. These systems will be more efficient and accurate.کلیدواژه ها
Internet of Things, Intrusion Detection System, Classification, Neural Networkاطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.