Application of Artificial Neural Network and Response Surface Methodology Approach for Modeling In-vitro Removal of Cu(ii) Ion From Human Blood Plasma Using a Medicinal Biomass

  • سال انتشار: 1404
  • محل انتشار: فصلنامه پیشرفت در تحقیقات بیوشیمی و شیمی، دوره: 8، شماره: 1
  • کد COI اختصاصی: JR_PCBR-8-1_007
  • زبان مقاله: انگلیسی
  • تعداد مشاهده: 78
دانلود فایل این مقاله

نویسندگان

Abuchi Elebo

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Francis Uchenna Anumonye

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Mbah Basil

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Ndubueze Chijindu Ifeanyi

West Africa Soy Industries Limited (WASIL)

Vincent Akandi Johnson

Department of Chemistry, Faculty of Sciences, Nigeria Police Force, Kano State

Isaac Omole Areguamen

Department of Chemistry, Faculty of Sciences, Federal University of Dutsin-Ma, Katsina State

Awwal Abdullahi Adamu

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Amarachi Maureen Udoh

Department of Nano Science, National Agency for Science and Engineering Infrastructure, Abuja, Nigeria

چکیده

Industrial activities have recently propelled the excessive introduction of toxic metals into the environment, leading to diverse health challenges. Therefore, it is apt to detoxify the blood transport system (blood plasma). The present study employed a batch technique to conduct in-vitro Cu(ii) removal from human blood plasma onto Opuntia fragalis leaves (OFL). The adsorption process was optimized utilizing response surface methodology (RSM) and artificial neural network (ANN) models. The ۳-D response surface graph was utilized to identify the interaction influence of key factors on the percentage removal of Cu(ii) ion. The adsorbent dose (۱.۵ mg), initial concentration (۳۰ mg/L), pH (۶.۰۳), and contact duration (۶۵ mins) were proposed as the best parameters using the ANN prediction profiler at ۹۸.۴۵ % removal of Cu(ii) ion from blood plasma which is similar to RSM values. The quadratic model demonstrated an excellent fit for the experimental data with a coefficient of correlation (R۲) of ۰.۸۶۲۷ and an F-value of ۷.۷۳. The ANN model derived from the same design demonstrated adequate predictive performance of Cu(ii) ion removal, which was reasonably predicted with an excellent correlation between the predicted and experimental values (R۲ = ۰.۹۱۶۰). The developed models were evaluated utilizing the root mean square error (RMSE), and coefficient of correlation (R۲) to identify the best ANN topology. Furthermore, the algorithm with the lowest RMSE (۰.۲۴۱) and highest R۲ was observed to be trained best using the Levenberg-Marquardt algorithm. Additionally, ANN results were deemed more reliable than RSM results and OFL has demonstrated excellent Cu(ii) ion removal from the human blood plasma.

کلیدواژه ها

Artificial Neural Network, optimization, Opuntia fragalis, Isotherms, Biosorption

اطلاعات بیشتر در مورد COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.