Optimizing Nanoparticle-Based Drug Delivery Systems Using Machine Learning Algorithms: A Genetic Algorithm Approach for Cancer Treatment
- سال انتشار: 1403
- کد COI اختصاصی: null
- زبان مقاله: انگلیسی
- تعداد مشاهده: 100
نویسندگان
personal
چکیده
Nanoparticle-based drug delivery systems (NDDS) have gained significant attention in recent years due to their potential to improve drug efficacy and reduce side effects. In this study, we propose a novel approach to optimize the drug release characteristics of nanoparticles using machine learning techniques, specifically Random Forest (RF) and Genetic Algorithms (GA). We aim to enhance the loading capacity, drug release rate, and tissue-targeting properties of the nanoparticles to improve cancer treatment outcomes. The study begins by collecting experimental data on various nanoparticle formulations and their drug release profiles. A Random Forest model is developed to predict the release rate of the drug based on nanoparticle properties. Subsequently, Genetic Algorithms are employed to optimize the nanoparticle design by improving factors such as particle size, surface charge, and drug loading efficiency. To validate the model, the diffusion of the drug within the nanoparticle system is simulated using Fick's Law. The simulation results show a significant improvement in drug release efficiency, with an increase of 30% in drug loading capacity and 95% prediction accuracy for the RF model. This approach demonstrates the potential of integrating machine learning and optimization algorithms to design more efficient and targeted nanoparticle-based drug delivery systems for cancer therapy. Future research will focus on in vivo validation and clinical trials to further optimize the system for personalized cancer treatment.کلیدواژه ها
Nanoparticles,Drug Delivery,Cancer Treatment,Machine Learning,Random Forest,Genetic Algorithm,Fick's Law,Optimization,Personalized Medicine,Drug Release Rate.اطلاعات بیشتر در مورد COI
COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.