DA-COVSGNet: Double Attentional Network for COVID Severity Grading
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 7
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 77
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-7_011
تاریخ نمایه سازی: 15 بهمن 1403
چکیده مقاله:
COVID-۱۹ is a respiratory disease that directly affects the lungs of infected individuals, leading to severe respiratory problems and lung infections. Although the severity of COVID-۱۹ has decreased, the possibility of contracting the virus still exists, especially for individuals with underlying medical issues. Diagnosis of the severity of COVID-۱۹ is very important in providing essential services to patients, improving treatment outcomes, and reducing complications and mortality rates associated with the virus. But, distinguishing of the severity of COVID-۱۹ is a challenging task. COVID-۱۹ is divided into four classes as far as its severity is concerned: normal-PCR+, mild, moderate, and severe. To overcome this challenge, we have introduced a novel method called DA-COVSGNet, based on a Convolutional Neural Network (CNN). In The proposed model, we preprocessed X-ray images using Synthetic Minority Over-Sampling Technique (SMOTE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) techniques, and fed them to the CNN architecture. Furthermore, we used new attention mechanisms to aid in better distinguishing and classifying disease severity levels, resulting in higher accuracy in classifying disease severity classes. Finally, we evaluated our proposed method on the COVIDGR dataset. The results show that our proposed method achieved accuracies of ۹۶.۷%, ۹۶.۲%, ۹۸.۵%, and ۹۵.۲% for the categories of Normal-PCR+, mild, moderate, and severe, respectively.
کلیدواژه ها:
Chest x-ray images ، COVID-۱۹ ، Contrast Limited Adaptive Histogram Equalization ، Synthetic Minority Over-Sampling Technique ، attention ، Severity classification
نویسندگان
M. Sharifi Fakhim
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
M. Fateh
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
A. Fateh
School of Computer Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
Y. Jalali
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :