Machine Learning and Data Mining Methods in Diabetes Research:A Review

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 77

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

SCCS03_004

تاریخ نمایه سازی: 15 بهمن 1403

چکیده مقاله:

Machine learning (ML) and data mining play pivotal roles in diabetes research bysignificantly enhancing prediction, diagnosis, and personalized management. This reviewsynthesizes recent methodologies in diabetes prediction, including ensemble methods anddeep learning techniques, highlighting their diverse applications across predictivemodeling, patient stratification, and risk assessment. Key challenges, such as data quality,model transparency, and ethical concerns, underscore the critical need for rigorousvalidation and fair, interpretable models. This review uniquely contributes by outliningpathways for effectively integrating ML into clinical diabetes care, offering future

کلیدواژه ها:

نویسندگان

Armin Tahamtan

Department of Computer Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran;

Sara Alipour

Department of Computer Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran;